2024届威海市重点中学数学高一下期末复习检测模拟试题含解析_第1页
2024届威海市重点中学数学高一下期末复习检测模拟试题含解析_第2页
2024届威海市重点中学数学高一下期末复习检测模拟试题含解析_第3页
2024届威海市重点中学数学高一下期末复习检测模拟试题含解析_第4页
2024届威海市重点中学数学高一下期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届威海市重点中学数学高一下期末复习检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在等差数列{an}中,已知a1=2A.50 B.52 C.54 D.562.甲、乙两名选手参加歌手大赛时,5名评委打的分数用如图所示的茎叶图表示,s1,s2分别表示甲、乙选手分数的标准差,则s1与s2的关系是().A.s1>s2 B.s1=s2 C.s1<s2 D.不确定3.函数f(x)=sin(ωx+π4)(ω>0)的图象在[0,πA.(1,5) B.(1,+∞) C.[4.若函数,则()A.9 B.1 C. D.05.已知等比数列的前项和为,,,则()A.31 B.15 C.8 D.76.已知函数的部分图象如图所示,则函数在上的最大值为()A. B. C. D.17.圆的半径为()A.1 B.2 C.3 D.48.半径为的半圆卷成一个圆锥,它的体积是()A. B. C. D.9.在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如右面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h~120km/h,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有()A.30辆 B.1700辆 C.170辆 D.300辆10.若抛物线上一点到焦点的距离是该点到轴距离的3倍,则()A. B. C. D.7二、填空题:本大题共6小题,每小题5分,共30分。11.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.现从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为.12.七位评委为某跳水运动员打出的分数的茎叶图如图,其中位数为_______.13.已知直线与圆交于两点,过分别作的垂线与轴交于两点,则_______.14.为等比数列,若,则_______.15.某奶茶店的日销售收入y(单位:百元)与当天平均气温x(单位:)之间的关系如下:x012y5221通过上面的五组数据得到了x与y之间的线性回归方程:;但现在丢失了一个数据,该数据应为____________.16.已知一扇形的半径为,弧长为,则该扇形的圆心角大小为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角、、所对的边分别为、、,且满足.(1)求角;(2)若,,求的周长.18.在中,已知角的对边分别为,且.(1)求角的大小;(2)若,,求的面积.19.已知α,β为锐角,tanα=(1)求sin2α(2)求tanβ20.某中学从高三男生中随机抽取n名学生的身高,将数据整理,得到的频率分布表如表所示:组号分组频数频率第1组50.05第2组a0.35第3组30b第4组200.20第5组100.10合计n1.00(1)求出频率分布表中的值,并完成下列频率分布直方图;(2)为了能对学生的体能做进一步了解,该校决定在第1,4,5组中用分层抽样取7名学生进行不同项目的体能测试,若在这7名学生中随机抽取2名学生进行引体向上测试,求第4组中至少有一名学生被抽中的概率.21.在中,角所对的边分别为,且.(1)求边长;(2)若的面积为,求边长.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

利用等差数列通项公式求得基本量d,根据等差数列性质可得a4【题目详解】设等差数列an公差为则a2+∴本题正确选项:C【题目点拨】本题考查等差数列基本量的求解问题,关键是能够根据等差数列通项公式构造方程求得公差,属于基础题.2、C【解题分析】

先求均值,再根据标准差公式求标准差,最后比较大小.【题目详解】乙选手分数的平均数分别为所以标准差分别为因此s1<s2,选C.【题目点拨】本题考查标准差,考查基本求解能力.3、C【解题分析】

结合正弦函数的基本性质,抓住只有一条对称轴,建立不等式,计算范围,即可.【题目详解】当x=π4时,wx+π4=π4w+π4,当【题目点拨】考查了正弦函数的基本性质,关键抓住只有一条对称轴,建立不等式,计算范围,即可.4、B【解题分析】

根据的解析式即可求出,进而求出的值.【题目详解】∵,∴,故,故选B.【题目点拨】本题主要考查分段函数的概念,以及已知函数求值的方法,属于基础题.5、B【解题分析】

利用基本元的思想,将已知条件转化为的形式,由此求得,进而求得.【题目详解】由于数列是等比数列,故,由于,故解得,所以.故选:B.【题目点拨】本小题主要考查等比数列通项公式的基本量的计算,考查等比数列前项和公式,属于基础题.6、A【解题分析】

由图象求出T、ω和φ的值,写出f(x)的解析式,再求x∈[6,10]时函数f(x)的最大值.【题目详解】由图象可知,5﹣3=2,解得T=8,由T8,解得ω;∴函数的解析式是f(x)=sin(x+φ);∵(5,1)在f(x)的图象上,有1=sin(φ)∴φ=2kπ,k∈Z;φ=2kπ,k∈Z;又﹣π<φ<0,∴φ;∴函数的解析式是f(x)=sin(x)当x∈[6,10]时,x∈[,],∴sin(x)∈[﹣1,];∴函数f(x)的最大值是.故选A.【题目点拨】本题考查了三角函数的图象与性质的应用问题,熟记图像与性质是关键,是基础题.7、A【解题分析】

将圆的一般方程化为标准方程,确定所求.【题目详解】因为圆,所以,所以,故选A.【题目点拨】本题考查圆的标准方程与一般方程互化,圆的标准方程通过展开化为一般方程,圆的一般方程通过配方化为标准方程,属于简单题.8、A【解题分析】

根据圆锥的底面圆周长等于半圆弧长可计算出圆锥底面圆半径,由勾股定理可计算出圆锥的高,再利用锥体体积公式可计算出圆锥的体积.【题目详解】设圆锥的底面圆半径为,高为,则圆锥底面圆周长为,得,,所以,圆锥的体积为,故选:A.【题目点拨】本题考查圆锥体积的计算,解题的关键就是要计算出圆锥底面圆的半径和高,解题时要从已知条件列等式计算,并分析出一些几何等量关系,考查空间想象能力与计算能力,属于中等题.9、B【解题分析】

由频率分布直方图求出在这段时间内以正常速度通过该处的汽车的频率,由此能估2000辆车中,在这段时间内以正常速度通过该处的汽车约有多少辆.【题目详解】由频率分布直方图得:在这段时间内以正常速度通过该处的汽车的频率为0.03+0.035+0.02×10=0.85∴估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有2000×0.85=1700(辆),故选B.【题目点拨】本题主要考查频率分布直方图的应用,属于中档题.直方图的主要性质有:(1)直方图中各矩形的面积之和为1;(2)组距与直方图纵坐标的乘积为该组数据的频率;(3)每个矩形的中点横坐标与该矩形的纵坐标相乘后求和可得平均值;(4)直观图左右两边面积相等处横坐标表示中位数.10、A【解题分析】由题意,焦点坐标,所以,解得,故选A。二、填空题:本大题共6小题,每小题5分,共30分。11、.【解题分析】试题分析:从中任取3个不同的数,有,,,,,,,,,共10种,其中只有为勾股数,故这3个数构成一组勾股数的概率为.考点:用列举法求随机事件的概率.12、85【解题分析】

按照茎叶图,将这组数据按照从小到大的顺序排列,找出中间的一个数即可.【题目详解】按照茎叶图,这组数据是79,83,84,85,87,92,93.把这组数据按照从小到大的顺序排列,最中间一个是85.所以中位数为85.故答案为:85【题目点拨】本题考查对茎叶图的认识.考查中位数,属于基础题.13、【解题分析】

联立直线的方程和圆的方程,求得两点的坐标,根据点斜式求得直线的方程,进而求得两点的坐标,由此求得的长.【题目详解】由解得,直线的斜率为,所以直线的斜率为,所以,令,得,所以.故答案为4【题目点拨】本小题主要考查直线和圆的位置关系,考查相互垂直的两条直线斜率的关系,考查直线的点斜式方程,属于中档题.14、【解题分析】

将这两式中的量全部用表示出来,正好有两个方程,两个未知数,解方程组即可求出。【题目详解】相当于,相当于,上面两式相除得代入就得,【题目点拨】基本量法是解决数列计算题最重要的方法,即将条件全部用首项和公比表示,列方程,解方程即可求得。15、4【解题分析】

根据回归直线经过数据的中心点可求.【题目详解】设丢失的数据为,则,,把代入回归方程可得,故答案为:4.【题目点拨】本题主要考查回归直线的特征,明确回归直线一定经过样本数据的中心点是求解本题的关键,侧重考查数学运算的核心素养.16、【解题分析】

利用扇形的弧长除以半径可得出该扇形圆心角的弧度数.【题目详解】由扇形的弧长、半径以及圆心角之间的关系可知,该扇形的圆心角大小为.故答案为:.【题目点拨】本题考查扇形圆心角的计算,解题时要熟悉扇形的弧长、半径以及圆心角之间的关系,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)直接利用余弦定理得到答案.(2)根据面积公式得到,利用余弦定理得到,计算得到答案.【题目详解】解:(1)由得.∴.又∵,∴.(2)∵,∴,则.把代入得即.∴,则.∴的周长为.【题目点拨】本题考查了余弦定理,面积公式,周长,意在考查学生对于公式的灵活运用.18、(1);(2).【解题分析】

(1)利用边角互化思想得,由结合两角和的正弦公式可求出的值,于此得出角的大小;(2)由余弦定理可计算出,再利用三角形的面积公式可得出的面积.【题目详解】(1)∵是的内角,∴且,又由正弦定理:得:,化简得:,又∵,∴;(2)∵,,∴由余弦定理和(1)得,即,可得:,又∵,故所求的面积为.【题目点拨】本题考查正弦定理边角互化的思想,考查余弦定理以及三角形的面积公式,本题巧妙的地方在于将配凑为,避免利用方程思想求出边的值,考查计算能力,属于中等题.19、(1)2425(2)【解题分析】

(1)结合α为锐角利用同角三角函数的关系,结合倍角公式即可求值;(2)结合α,β为锐角,求出tan(α+β),利用两角和的正切公式即可求出tan【题目详解】(1)因为α为锐角,tanα=43所以sin(2)因为α,β为锐角,cos(α+β)=-所以sin(α+β)=2因为tan(α+β)=tanα+tan【题目点拨】本题考查同角三角函数之间的关系以及倍角公式,同时考查了两角和的正切公式,属于中档题.20、(1)直方图见解析;(2).【解题分析】

(1)由题意知,0.050,从而n=100,由此求出第2组的频数和第3组的频率,并完成频率分布直方图.(2)利用分层抽样,35名学生中抽取7名学生,设第1组的1位学生为,第4组的4位同学为,第5组的2位同学为,利用列举法能求出第4组中至少有一名学生被抽中的概率.【题目详解】(1)由频率分布表可得,所以,;(2)因为第1,4,5组共有35名学生,利用分层抽样,在35名学生中抽取7名学生,每组分别为:第1组;第4组;第5组.设第1组的1位学生为,第4组的4位同学为,第5组的2位同学为.则从7位学生中抽两位学生的基本事件分别为:一共21种.记“第4组中至少有一名学生被抽中”为事件,即包含的基本事件分别为:一共3种,于是所以,.【题目点拨】本题考查概率的求法,考查频率分布直方图、列举法等基础知识,考查

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论