2024届陕西省咸阳市百灵中学数学高一下期末预测试题含解析_第1页
2024届陕西省咸阳市百灵中学数学高一下期末预测试题含解析_第2页
2024届陕西省咸阳市百灵中学数学高一下期末预测试题含解析_第3页
2024届陕西省咸阳市百灵中学数学高一下期末预测试题含解析_第4页
2024届陕西省咸阳市百灵中学数学高一下期末预测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届陕西省咸阳市百灵中学数学高一下期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在ΔABC中,内角A,B,C所对的边分别为a,b,c,若c=2bsinC,B≤πA.π6 B.π4 C.π2.已知两个变量x,y之间具有线性相关关系,试验测得(x,y)的四组值分别为(1,2),(2,4),(3,5),(4,7),则y与x之间的回归直线方程为()A.y=0.8x+3 B.y=-1.2x+7.5C.y=1.6x+0.5 D.y=1.3x+1.23.已知,,那么等于()A. B. C. D.4.设P是所在平面内的一点,,则()A. B. C. D.5.在中,是的中点,,,相交于点,若,,则()A.1 B.2 C.3 D.46.设定义域为的奇函数是增函数,若对恒成立,则实数的取值范围是()A. B. C. D.7.在边长为2的菱形中,,是的中点,则A. B. C. D.8.用数学归纳法证明1+a+a2+…+an+1=(a≠1,n∈N*),在验证n=1成立时,左边的项是()A.1 B.1+a C.1+a+a2 D.1+a+a2+a49.已知圆与直线及都相切,圆心在直线上,则圆的方程为()A. B.C. D.10.当点到直线的距离最大时,m的值为()A.3 B.0 C. D.1二、填空题:本大题共6小题,每小题5分,共30分。11.函数的值域为_____________.12.已知正实数满足,则的最大值为_______.13.设,,则______.14.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高,,三组内的学生中,用分层抽样的方法抽取18人参加一项活动,则从身高在内的学生中抽取的人数应为________.15.已知当时,函数(且)取得最大值,则时,的值为__________.16.在中,,点在边上,若,的面积为,则___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.求过三点的圆的方程,并求这个圆的半径和圆心坐标.18.已知数列的通项公式为.(1)求这个数列的第10项;(2)在区间内是否存在数列中的项?若有,有几项?若没有,请说明理由.19.已知函数(),设函数在区间上的最大值为.(1)若,求的值;(2)若对任意的恒成立,试求的最大值.20.近年来,郑州经济快速发展,跻身新一线城市行列,备受全国瞩目.无论是市内的井字形快速交通网,还是辐射全国的米字形高铁路网,郑州的交通优势在同级别的城市内无能出其右.为了调查郑州市民对出行的满意程度,研究人员随机抽取了1000名市民进行调查,并将满意程度以分数的形式统计成如下的频率分布直方图,其中.(I)求的值;(Ⅱ)求被调查的市民的满意程度的平均数,众数,中位数;(Ⅲ)若按照分层抽样从,中随机抽取8人,再从这8人中随机抽取2人,求至少有1人的分数在的概率.21.设数列的前项和.已知.(1)求数列的通项公式;(2)是否对一切正整数,有?说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

利用正弦定理可求得sinB=12【题目详解】因为c=2bsinC,所以sinC=2sinBsinC,所以sinB=1【题目点拨】本题主要考查正弦定理的运用,难度较小.2、C【解题分析】试题分析:设样本中线点为,其中,即样本中心点为,因为回归直线必过样本中心点,将代入四个选项只有B,C成立,画出散点图分析可知两个变量x,y之间正相关,故C正确.考点:回归直线方程3、B【解题分析】

首先求出题中,,之间的关系,然后利用正切的和角公式求解即可.【题目详解】由题知,,所以.故选:B.【题目点拨】本题考查了正切的和角公式,属于基础题.4、B【解题分析】移项得.故选B5、D【解题分析】由题意知,所以,解得,所以,故选D.6、A【解题分析】

由题意可得,即为,可得恒成立,讨论是否为0,结合换元法和基本不等式,可得所求范围.【题目详解】解:由题意可得,即为,可得恒成立,当时,上式显然成立;当时,可得,设,,可得,由,可得,可得,即,故选:A.【题目点拨】本题主要考查函数的奇偶性和单调性的运用,考查不等式恒成立问题解法,注意运用参数分离和换元法,考查化简运算能力,属于中档题.7、D【解题分析】

选取向量为基底,用基底表示,然后计算.【题目详解】由题意,,.故选D.【题目点拨】本题考查向量的数量积,平面向量的线性运算,解题关键是选取基底,把向量用基底表示.8、C【解题分析】

在验证时,左端计算所得的项,把代入等式左边即可得到答案.【题目详解】解:用数学归纳法证明,

在验证时,把当代入,左端.

故选:C.【题目点拨】此题主要考查数学归纳法证明等式的问题,属于概念性问题.9、B【解题分析】

由平行线间的距离公式求出圆的直径,然后设出圆心,由点到两条切线的距离都等于半径,求出,即可求得圆的方程.【题目详解】因为两条直线与平行,所以它们之间的距离即为圆的直径,所以,所以.设圆心坐标为,则点到两条切线的距离都等于半径,所以,,解得,故圆心为,所以圆的标准方程为.故选:.【题目点拨】本题主要考查求解圆的方程,同时又进一步考查了直线与圆的位置关系,圆的切线性质等.本题也注重考查审题能力,分析问题和解决问题的能力.难度较易.10、C【解题分析】

求得直线所过的定点,当和直线垂直时,距离取得最大值,根据斜率乘积等于列方程,由此求得的值.【题目详解】直线可化为,故直线过定点,当和直线垂直时,距离取得最大值,故,故选C.【题目点拨】本小题主要考查含有参数的直线过定点的问题,考查点到直线距离的最值问题,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

分析函数在区间上的单调性,由此可求出该函数在区间上的值域.【题目详解】由于函数和函数在区间上均为增函数,所以,函数在区间上也为增函数,且,,当时,,因此,函数的值域为.故答案为:.【题目点拨】本题考查函数值域的求解,解题的关键就是判断出函数的单调性,考查分析问题和解决问题的能力,属于中等题.12、【解题分析】

对所求式子平边平方,再将代入,从而将问题转化为求【题目详解】∵∵,∴,∴,等号成立当且仅当.故答案为:.【题目点拨】本题考查条件等式下利用基本不等式求最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意等号成立的条件.13、【解题分析】

由,根据两角差的正切公式可解得.【题目详解】,故答案为【题目点拨】本题主要考查了两角差的正切公式的应用,属于基础知识的考查.14、3【解题分析】

先由频率之和等于1得出的值,计算身高在,,的频率之比,根据比例得出身高在内的学生中抽取的人数.【题目详解】身高在,,的频率之比为所以从身高在内的学生中抽取的人数应为故答案为:【题目点拨】本题主要考查了根据频率分布直方图求参数的值以及分层抽样计算各层总数,属于中档题.15、3【解题分析】

先将函数的解析式利用降幂公式化为,再利用辅助角公式化为,其中,由题意可知与的关系,结合诱导公式以及求出的值.【题目详解】,其中,当时,函数取得最大值,则,,所以,,解得,故答案为.【题目点拨】本题考查三角函数最值,解题时首先应该利用降幂公式、和差角公式进行化简,再利用辅助角公式化简为的形式,本题中用到了与之间的关系,结合诱导公式进行求解,考查计算能力,属于中等题.16、【解题分析】

由,的面积为可以求解出三角形,再通过,我们可以得出(两三角形等高)再利用正弦形式表示各自面积,即能得出的值.【题目详解】,的面积为,所以为等边三角形,又所以(等高),又所以填写2【题目点拨】已知三角形面积及一边一角,我们能把形成该角的另外一边算出,从而把三角形所有量都能计算出来(如果需要),求两角正弦值的比值,我们更多联想到正弦定理的公式,或面积公式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(x﹣4)2+(y+3)2=21,圆的半径为【解题分析】

设出圆的一般方程,把代入所设,得到关于的方程组,求解,即可求得圆的一般方程,化为标准方程,进一步求得圆心坐标与半径.【题目详解】设圆的方程为:x2+y2+Dx+Ey+F=0,则,解得D=﹣4,E=3,F=0,∴圆的方程为x2+y2﹣8x+6y=0,化为(x﹣4)2+(y+3)2=21,可得:圆心是(4,﹣3)、半径r=1.【题目点拨】本题主要考查圆的方程和性质,属于简单题.求圆的方程常见思路与方法有:①直接设出动点坐标,根据题意列出关于的方程即可;②根据几何意义直接找到圆心坐标和半径,写出方程;③待定系数法,可以根据题意设出圆的标准方程或一般式方程,再根据所给条件求出参数即可.18、(1)(2)只有一项【解题分析】

(1)根据通项公式直接求解(2)根据条件列不等式,解得结果【题目详解】解:(1);(2)解不等式得,因为为正整数,所以,因此在区间内只有一项.【题目点拨】本题考查数列通项公式及其应用,考查基本分析求解能力,属基础题19、(1);(2)【解题分析】

(1)根据二次函数的单调性得在区间,单调递减,在区间单调递增,从得而得;(2)①当时,在区间上是单调函数,则,利用不等式的放缩法求得;②当时,对进行分类讨论,求得;从而求得k的最大值为.【题目详解】(1)当时,,结合图像可知,在区间,单调递减,在区间单调递增..(2)①当时,在区间上是单调函数,则,而,,,∴.②当时,的对称轴在区间内,则,又,(ⅰ)当时,有,,则,(ⅱ)当时,有,则,所以,对任意的都有,综上所述,时在区间的最大值为,所以k的最大值为.【题目点拨】本题考查一元二次函数的图象与性质、含参问题中的恒成立问题,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查逻辑推理能力和运算求解能力,求解时注意讨论的完整性.20、(Ⅰ)(Ⅱ)平均数74.9,众数75.14,中位数75;(Ш)【解题分析】

(I)根据频率之和为列方程,结合求出的值.(II)利用各组中点值乘以频率然后相加,求得平均数.利用中位数是面积之和为的地方,列式求得中位数.以频率分布直方图最高一组的中点作为中位数.(III)先计算出从,中分别抽取人和人,再利用列举法和古典概型概率计算公式,计算出所求的概率.【题目详解】解:(I)依题意得,所以,又,所以.(Ⅱ)平均数为中位数为众数为(Ш)依题意,知分数在的市民抽取了2人,记为,分数在的市民抽取了6人,记为1,2,3,4,5,6,所以从这8人中随机抽取2人所有的情况为:,共28种,其中满足条件的为,共13种,设“至少有1人的分数在”的事件为,则【题目点拨】本小题主要考查求解频率分布直方图上的未知数,考查利用频率分布直方图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论