




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省德阳市罗江中学2024届数学高一第二学期期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,向量,,的起点与终点均在正方形网格的格点上,若,则()A. B.3 C.1 D.2.已知圆锥的底面半径为,母线与底面所成的角为,则此圆锥的侧面积为()A. B. C. D.3.已知,,,则的取值范围是()A. B. C. D.4.如图的折线图为某小区小型超市今年一月份到五月份的营业额和支出数据(利润=营业额-支出),根据折线图,下列说法中正确的是()A.该超市这五个月中,利润随营业额的增长在增长B.该超市这五个月中,利润基本保持不变C.该超市这五个月中,三月份的利润最高D.该超市这五个月中的营业额和支出呈正相关5.已知实数x,y满足约束条件,那么目标函数的最大值是()A.0 B.1 C. D.106.实数满足,则的取值范围为()A. B. C. D.7.的内角的对边分别为,若的面积为,则()A. B. C. D.8.关于的不等式的解集是,则关于的不等式的解集是()A. B.C. D.9.已知函数,则()A.2 B.-2 C.1 D.-110.某三棱锥的三视图如图所示,该三棱锥的外接球表面积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量、满足||=2,且与的夹角等于,则||的最大值为_____.12.已知,,与的夹角为钝角,则的取值范围是_____;13.已知数列是等比数列,公比为,且,,则_________.14.若直线与圆相交于,两点,且(其中为原点),则的值为________.15.在等差数列中,,,则的值为_______.16.______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某校为创建“绿色校园”,在校园内种植树木,有A、B、C三种树木可供选择,已知这三种树木6年内的生长规律如下:A树木:种植前树木高0.84米,第一年能长高0.1米,以后每年比上一年多长高0.2米;B树木:种植前树木高0.84米,第一年能长高0.04米,以后每年生长的高度是上一年生长高度的2倍;C树木:树木的高度(单位:米)与生长年限(单位:年,)满足如下函数:(表示种植前树木的高度,取).(1)若要求6年内树木的高度超过5米,你会选择哪种树木?为什么?(2)若选C树木,从种植起的6年内,第几年内生长最快?18.求倾斜角为且分别满足下列条件的直线方程:(1)经过点;(2)在轴上的截距是-5.19.已知、、是同一平面内的三个向量,其中=(1,2),=(﹣2,3),=(﹣2,m)(1)若⊥(+),求||;(2)若k+与2﹣共线,求k的值.20.已知偶函数.(1)若方程有两不等实根,求的范围;(2)若在上的最小值为2,求的值.21.为了了解四川省各景点在大众中的熟知度,随机对岁的人群抽样了人,回答问题“四川省有哪几个著名的旅游景点?”统计结果如表.组号分组回答正确的人数回答正确的人数占本组的频率第组第组第组第组第组(1)分别求出的值;(2)从第,,组回答正确的人中用分层抽样的方法抽取人,求第,,组每组各抽取多少人?(3)通过直方图求出年龄的众数,平均数.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
根据图像,将表示成的线性和形式,由此求得的值,进而求得的值.【题目详解】根据图像可知,所以,故选A.【题目点拨】本小题主要考查平面向量的线性运算,考查平面向量基本定理,考查数形结合的数学思想方法,属于基础题.2、B【解题分析】
首先计算出母线长,再利用圆锥的侧面积(其中为底面圆的半径,为母线长),即可得到答案.【题目详解】由于圆锥的底面半径,母线与底面所成的角为,所以母线长,故圆锥的侧面积;故答案选B【题目点拨】本题考查圆锥母线和侧面积的计算,解题关键是熟练掌握圆锥的侧面积的计算公式,即(其中为底面圆的半径,为母线长),属于基础题3、D【解题分析】
根据所给等式,用表示出,代入中化简,令并构造函数,结合函数的图像与性质即可求得的取值范围.【题目详解】因为,所以,由解得,因为,所以,则由可得,令,.所以画出,的图像如下图所示:由图像可知,函数在内的值域为,即的取值范围为,故选:D.【题目点拨】本题考查了由等式求整式的取值范围问题,打勾函数的图像与性质应用,注意若使用基本不等式,注意等号成立条件及自变量取值范围影响,属于中档题.4、D【解题分析】
根据折线图,分析出超市五个月中利润的情况以及营业额和支出的相关性.【题目详解】对于A选项,五个月的利润依次为:,其中四月比三月是下降的,故A选项错误.对于B选项,五月的月份是一月和四月的两倍,说明利润有比较大的波动,故B选项错误.对于C选项,五个月的利润依次为:,所以五月的利润最高,故C选项错误.对于D选项,根据图像可知,超市这五个月中的营业额和支出呈正相关,故D选项正确.故选:D【题目点拨】本小题主要考查折线图的分析与理解,属于基础题.5、D【解题分析】
根据约束条件,画出可行域,再平移目标函数所在的直线,找到最优点,将最优点的坐标代入目标函数求最值.【题目详解】画出可行域(如图),平移直线,当目标直线过点时,目标函数取得最大值,.故选:D【题目点拨】本题主要考查线性规划求最值问题,还考查了数形结合的思想,属于基础题.6、A【解题分析】
画出可行域,平移基准直线到可行域边界的位置,由此求得目标函数的取值范围.【题目详解】画出可行域如下图所示,平移基准直线到可行域边界的位置,由图可知目标函数分别在出取的最小值和最大值,最小值为,最大值为,故的取值范围是,故选A.【题目点拨】本小题主要考查线性规划求最大值和最小值,考查数形结合的数学思想方法,属于基础题.7、C【解题分析】
由题意可得,化简后利用正弦定理将“边化为角“即可.【题目详解】解:的面积为,,,故选:C.【题目点拨】本题主要考查正弦定理的应用和三角形的面积公式,属于基础题.8、C【解题分析】关于的不等式,即的解集是,∴不等式,可化为,解得,∴所求不等式的解集是,故选C.9、B【解题分析】
根据分段函数的表达式,直接代入即可得到结论.【题目详解】由分段函数的表达式可知,则,故选:.【题目点拨】本题主要考查函数值的计算,根据分段函数的表达式求解是解决本题的关键,属于容易题.10、D【解题分析】
根据三视图还原几何体,由三棱锥的几何特征即可求出其外接球表面积.【题目详解】根据三视图可知,该几何体如图所示:所以该几何体的外接球,即是长方体的外接球.因为,所以外接球直径.故该三棱锥的外接球表面积为.故选:D.【题目点拨】本题主要考查由三视图还原几何体,并计算其外接球的表面积,意在考查学生的直观想象能力和数学运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
在中,令,可得,可得点在半径为的圆上,,可得,进而可得的最大值.【题目详解】∵向量、满足||=1,且与的夹角等于,如图在中,令,,可得可得点B在半径为R的圆上,1R4,R=1.则||的最大值为1R=4【题目点拨】本题考查了向量的夹角、模的运算,属于中档题.12、【解题分析】
与的夹角为钝角,即数量积小于0.【题目详解】因为与的夹角为钝角,所以与的数量积小于0且不平行.且所以【题目点拨】本题考查两向量的夹角为钝角的坐标表示,一定注意数量积小于0包括平角.13、.【解题分析】
先利用等比中项的性质计算出的值,然后由可求出的值.【题目详解】由等比中项的性质可得,得,所以,,,故答案为.【题目点拨】本题考查等比数列公比的计算,充分利用等比中项和等比数列相关性质的应用,可简化计算,属于中等题.14、【解题分析】
首先根据题意画出图形,再根据求出直线的倾斜角,求斜率即可.【题目详解】如图所示直线与圆恒过定点,不妨设,因为,所以,两种情况讨论,可得,.所以斜率.故答案为:【题目点拨】本题主要考查直线与圆的位置关系,同时考查了数形结合的思想,属于简单题.15、.【解题分析】
设等差数列的公差为,根据题中条件建立、的方程组,求出、的值,即可求出的值.【题目详解】设等差数列的公差为,所以,解得,因此,,故答案为:.【题目点拨】本题考查等差数列的项的计算,常利用首项和公差建立方程组,结合通项公式以及求和公式进行计算,考查方程思想,属于基础题.16、【解题分析】
先令,得到,两式作差,根据等比数列的求和公式,化简整理,即可得出结果.【题目详解】令,则,两式作差得:所以故答案为:【题目点拨】本题主要考查数列的求和,熟记错位相加法求数列的和即可,属于常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)选择C;(2)第4或第5年.【解题分析】
(1)根据已知求出三种树木六年末的高度,判断得解;(2)设为第年内树木生长的高度,先求出,设,则,.再利用分析函数的单调性,分析函数的图像得解.【题目详解】(1)由题意可知,A、B、C三种树木随着时间的增加,高度也在增加,6年末:A树木的高度为(米):B树木的高度为(米):C树木的高度为(米),所以选择C树木.(2)设为第年内树木生长的高度,则,所以,,.设,则,.令,因为在区间上是减函数,在区间上是增函数,所以当时,取得最小值,从而取得最大值,此时,解得,因为,,故的可能值为3或4,又,,即.因此,种植后第4或第5年内该树木生长最快.【题目点拨】本题主要考查等差数列和等比数列求和,考查函数的图像和性质的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于难题.18、(1)(2)【解题分析】
(1)利用倾斜角与斜率的关系与点斜式求解即可.(2)利用点斜式求解即可.【题目详解】解:(1)∵所求直线的倾斜角为,斜率,又∵经过,故方程为∴即方程为.(2)∵所求直线在轴上的截距是-5,又有斜率,故方程为∴所求方程为【题目点拨】本题主要考查了直线斜率与倾斜角的关系以及直线方程的点斜式运用.属于基础题.19、(1);(2)-2【解题分析】
(1)根据向量的坐标的运算法则和向量垂直的条件,以及模的定义即可求出;(2)根据向量共线的条件即可求出.【题目详解】(1)∵,∴,,∴m=﹣1∴∴=(2)由已知:,,因为,所以:k﹣2=4(2k+3),∴k=﹣2【题目点拨】本题考查了向量的坐标运算以及向量的垂直和平行,属于基础题.20、(1);(2)或.【解题分析】
(1)由偶函数的定义,利用,求得的值,再由对数函数的单调性,结合题设条件,即可求解实数的范围;(2)利用换元法和对勾函数的单调性,以及二次函数的闭区间上的求法,分类讨论对称轴和区间的关系,即可求解.【题目详解】(1)因为,所以的定义域为,因为是偶函数,即,所以,故,所以,即方程的解为一切实数,所以,因为,且,所以原方程转化为,令,,所以所以在上是减函数,是增函数,当时,使成立的有两个,又由知,与一一对应,故当时,有两不等实根;(2)因为,所以,所以,令,则,令,设,则,因为,所以,即在上是增函数,所以,设,则.(i)当时,的最小值为,所以,解得,或4(舍去);(ii)当时,的最小值为,不合题意;(iii)当时,的最小值为,所以,解得,或(舍去).综上知,或.【题目点拨】本题主要考查了函数的综合应用,其中解答中涉及到函数的奇偶性,对数函数的图象与性质,以及换元法和分类讨论思想的应用,试题综合性强,属于难题,着重考查了分析问题和解答问题的能力,以及推理与运算能力.21、(1);(2)第组抽取人,第组抽取人,第组抽取人;(3)40,.【解题分析】
(1)由频率分布表得第四组人数为25人,由频率分布直方图得第四组的频率为0.25,从而求出.由此求出各组人数,进而能求出,,,的值.(2)由第2,3,4组回答正确的人分别有18、27、9人,从中用分层抽样的方法抽取6人,由此能求出第2,3,4组每
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西咸新区沣西新城第八幼儿园招聘真题2024
- VRAR影视后期应用-全面剖析
- 河北工业大学招聘制工作人员真题2024
- 2024年三月数据中心砂砾石地基热稳定性验收协议
- 2025年初中地理国情认知模拟试卷及答案(地理信息系统在城市规划中的应用)
- 气候变化对农业保险需求影响-全面剖析
- 2025年阿拉伯语水平测试模拟试卷历年真题解析与模拟实战技巧
- 关闸马路的交通规划优化-全面剖析
- 2025年护士执业资格考试题库(精神科护理学专项)案例分析试题
- 《油菜种植对农田小气候的影响及调节机制》论文
- JJF 1603-2016(0.1~2.5)THz太赫兹光谱仪校准规范
- 《民法典》-第二编 物权编-案例分析,解读-3
- GB/T 1266-2006化学试剂氯化钠
- 海岸动力学全册配套完整课件
- 工作面防飞矸封闭式管理规定
- 纤维素酶活性的测定
- 干部人事档案管理岗位培训的讲义课件
- 验电接地环安装规范
- 计算机监控系统安装单元工程质量验收评定表
- 质量整改通知单(样板)
- 外墙干挂大理石施工方案(标准版)
评论
0/150
提交评论