




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省定远县民族私立中学高一数学第二学期期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图所示,在中,,点在边上,点在线段上,若,则()A. B. C. D.2.用数学归纳法证明不等式的过程中,由递推到时,不等式左边()A.增加了一项B.增加了两项,C.增加了A中的一项,但又减少了另一项D.增加了B中的两项,但又减少了另一项3.中国古代数学名著《算法统宗》中有这样一个问题:“三百七十里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行数里,请公仔细算相还”.其意思为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,请问从第几天开始,走的路程少于30里()A.3 B.4 C.5 D.64.将函数的图象沿轴向左平移个单位,得到一个偶函数的图象,则的一个可能取值为()A. B. C. D.5.已知圆(为圆心,且在第一象限)经过,,且为直角三角形,则圆的方程为()A. B.C. D.6.已知直线和,若,则实数的值为A.1或 B.或 C.2或 D.或7.“”是“、、”成等比数列的()条件A.充分非必要 B.必要非充分 C.充要 D.既非充分又非必要8.已知点在角的终边上,函数图象上与轴最近的两个对称中心间的距离为,则的值为()A. B. C. D.9.在ΔABC中,如果A=45∘,c=6,A.无解 B.一解 C.两解 D.无穷多解10.圆与直线的位置关系是()A.相交 B.相切 C.相离 D.直线过圆心二、填空题:本大题共6小题,每小题5分,共30分。11.方程在上的解集为______.12.若是等比数列,,,则________13.记Sn为等比数列{an}的前n项和.若,则S5=____________.14.已知斜率为的直线的倾斜角为,则________.15.直线与圆的位置关系是______.16.已知向量满足,则三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆:.(1)过的直线与圆:交于,两点,若,求直线的方程;(2)过的直线与圆:交于,两点,直接写出面积取值范围;(3)已知,,圆上是否存在点,使得,请说明理由.18.已知分别为三个内角的对边长,且(1)求角的大小;(2)若,求面积的最大值.19.在锐角中角,,的对边分别是,,,且.(1)求角的大小;(2)若,求面积的最大值.20.已知.若三点共线,求实数的值.21.已知△ABC的顶点A4,3,AB边上的高所在直线为x-y-3=0,D为AC中点,且BD所在直线方程为3x+y-7=0(1)求顶点B的坐标;(2)求BC边所在的直线方程。
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
本题首先可根据点在边上设,然后将化简为,再然后根据点在线段上解得,最后通过计算即可得出结果.【题目详解】因为点在边上,所以可设,所以,因为点在线段上,所以三点共线,所以,解得,所以,,故选B.【题目点拨】本题考查向量共线的相关性质以及向量的运算,若向量与向量共线,则,考查计算能力,是中档题.2、D【解题分析】
根据题意,分别写出和时,左边对应的式子,进而可得出结果.【题目详解】当时,左边,当时,左边,所以,由递推到时,不等式左边增加了,;减少了;故选:D【题目点拨】本题主要考查数学归纳法的应用,熟记数学归纳法,会求增量即可,属于基础题型.3、B【解题分析】
由题意知,本题考查等比数列问题,此人每天的步数构成公比为的等比数列,由求和公式可得首项,进而求得答案.【题目详解】设第一天的步数为,依题意知此人每天的步数构成公比为的等比数列,所以,解得,由,,解得,故选B.【题目点拨】本题主要考查学生的数学抽象和数学建模能力.4、B【解题分析】
利用函数y=Asin(ωx+)的图象变换可得函数平移后的解析式,利用其为偶函数即可求得答案.【题目详解】令y=f(x)=sin(2x+),则f(x)=sin[2(x)+]=sin(2x),∵f(x)为偶函数,∴=kπ,∴=kπ,k∈Z,∴当k=0时,.故的一个可能的值为.故选:B.【题目点拨】本题考查函数y=Asin(ωx+)的图象变换,考查三角函数的奇偶性的应用,属于中档题.5、D【解题分析】
设且,半径为,根据题意列出方程组,求得的值,即可求解.【题目详解】依题意,圆经过点,可设且,半径为,则,解得,所以圆的方程为.【题目点拨】本题主要考查了圆的标准方程的求解,其中解答中熟记圆的标准方程的形式,以及合理应用圆的性质是解答的关键,着重考查了运算与求解能力,属于基础题.6、C【解题分析】
利用直线与直线垂直的性质直接求解.【题目详解】∵直线和,若,∴,得,解得或,∴实数的值为或.故选:C.【题目点拨】本题考查直线与直线垂直的性质等基础知识,考查运算求解能力,属于基础题.7、B【解题分析】
利用充分必要条件直接推理即可【题目详解】若“、、”成等比数列,则;成立反之,若“”,如果a=b=G=0则、、”不成等比数列,故选B.【题目点拨】本题考查充分必要条件的判定,熟记等比数列的性质是关键,是基础题8、C【解题分析】由题意,则,即,则;又由三角函数的定义可得,则,应选答案C.9、C【解题分析】
计算出csinA的值,然后比较a、csin【题目详解】由题意得csinA=6×2【题目点拨】本题考查三角形解的个数的判断,解题时要熟悉三角形解的个数的判断条件,考查分析问题和解决问题的能力,属于中等题.10、B【解题分析】
求出圆心到直线的距离与半径比较.【题目详解】圆的圆心是,半径为1,圆心到直线即的距离为,直线与圆相切.故选:B.【题目点拨】本题考查直线与圆人位置关系,判断方法是:利用圆心到直线的距离与半径的关系判断.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
由求出的取值范围,由可得出的值,从而可得出方程在上的解集.【题目详解】,,由,得.,解得,因此,方程在上的解集为.故答案为:.【题目点拨】本题考查正切方程的求解,解题时要求出角的取值范围,考查计算能力,属于基础题.12、【解题分析】
根据等比数列的通项公式求解公比再求和即可.【题目详解】设公比为,则.故故答案为:【题目点拨】本题主要考查了等比数列的基本量求解,属于基础题型.13、.【解题分析】
本题根据已知条件,列出关于等比数列公比的方程,应用等比数列的求和公式,计算得到.题目的难度不大,注重了基础知识、基本计算能力的考查.【题目详解】设等比数列的公比为,由已知,所以又,所以所以.【题目点拨】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式分式计算,部分考生易出现运算错误.14、【解题分析】
由直线的斜率公式可得=,分析可得,由同角三角函数的基本关系式计算可得答案.【题目详解】根据题意,直线的倾斜角为,其斜率为,则有=,则,必有,即,平方有:,得,故,解得或(舍).故答案为﹣【题目点拨】本题考查直线的倾斜角,涉及同角三角函数的基本关系式,属于基础题.15、相交【解题分析】
由直线系方程可得直线过定点,进而可得点在圆内部,即可得到位置关系.【题目详解】化直线方程为,令,解得,所以直线过定点,又圆的圆心坐标为,半径,而,所以点在圆内部,故直线与圆的位置关系是相交.故答案为:相交.【题目点拨】本题考查直线与圆位置关系的判断,考查直线系方程的应用,属于基础题.16、【解题分析】试题分析:=,又,,代入可得8,所以考点:向量的数量积运算.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2);(3)存在,理由见解析【解题分析】
求得圆的圆心和半径.(1)设出直线的方程,利用弦长、勾股定理和点到直线距离列方程,解方程求得直线的斜率,进而求得直线的方程.(2)利用三角形的面积公式列式,由此求得面积取值范围.(3)求得三角形外接圆的方程,根据圆和圆的位置关系,判断出点存在.【题目详解】圆心为,半径为.(1)直线有斜率,设:,圆心到直线的距离为,∵,则由,得,直线的方程为或(2)依题意可知,三角形的面积为,由于,所以,所以.(3)设三角形的外接圆圆心为(),半径为,由正弦定理得,,所以,所以圆的圆心为,所以圆的方程为,圆与圆满足圆心距:,∴圆与圆相交于两点,圆上存在两个这样的点,满足题意.【题目点拨】本小题主要考查直线和圆的位置关系,考查圆和圆的位置关系,考查三角形的面积公式,考查化归与转化的数学思想方法,属于中档题.18、(1);(2).【解题分析】
(1)利用正弦定理、三角形内角和定理、两角和的正弦公式,特殊角的三角函数值,化简等式进行求解即可(2)根据余弦定理,结合三角形面积公式、重要不等式进行求解即可【题目详解】(1)由正弦定理可知:,,,所以可得:,;(2)由余弦定理可知:,由可知:,所以,所以面积的最大值为【题目点拨】本题考查了正弦定理、余弦定理、三角形面积公式,考查了重要不等式,考查了两角和的正弦公式,考查了数学运算能力.19、(1)(2)【解题分析】
(1)由正弦定理可得,结合,可求出与;(2)由余弦定理可得,结合基本不等式可得,即可求出,从而可求出的最大值.【题目详解】解:(1)因为,所以,又,所以,又是锐角三角形,则.(2)因为,,,所以,所以,即(当且仅当时取等号),故.【题目点拨】本题考查了正弦定理、余弦定理在解三角形中的运用,考查了利用基本不等式求最值,考查了学生的计算能力,属于中档题.20、【解题分析】
计算出由三点共线解出即可.【题目详解】解:,∵三点共线,∴,∴【题目点拨】本题考查3点共线的向量表示,属于基础题.21、(1)B(0,7)(2)19x+y-7=0【解题分析】
(1)联立直线AB,BD的方程,求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新闻传播中的跨文化沟通问题研究论文
- 2025年中学教师资格考试《综合素质》考前押题密卷九十(含答案)
- 短视频平台品牌营销策略分析-全面剖析
- 时尚传播中的文化符号解读论文
- 2025-2030全球及中国无卤阻燃聚丙烯行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 物联网设备数据加密与传输安全策略-全面剖析
- 世界语文学中的民间舞蹈研究论文
- 2025-2030全球及中国农场自动气象站(AWS)行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2025-2030全球及中国产品采用解决方案行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2025-2030全球及中国下一代生物特征识别行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 政策目标确立和方案制定概述课件
- 六年级下册英语课件-Unit 4 Lesson 23 Good-bye-冀教版(共19张PPT)
- 硬笔书法全册教案共20课时
- 张波-超高温陶瓷课件
- 资源环境信息系统(gis)课件
- 特洛伊战争(英文版)
- 近代以来广州外贸产业的发展历程
- DBJ04-T 410-2021城市停车场(库)设施配置标准
- 车站主体结构模板支架专项施工方案--终稿(专家意见修改的)-副本
- 保洁岗位培训
- 丽声北极星自然拼读绘本第二级 Pad, Pad, Pad! 课件
评论
0/150
提交评论