版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省广安市邻水实验学校2024届高一数学第二学期期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,在正方体,点在线段上运动,则下列判断正确的是()①平面平面②平面③异面直线与所成角的取值范围是④三棱锥的体积不变A.①② B.①②④ C.③④ D.①④2.已知等差数列的前项和为,,当时,的值为()A.21 B.22 C.23 D.243.某产品的广告费用x与销售额y的统计数据如下表:广告费用(万元)
4
2
3
5
销售额(万元)
49
26
39
54
根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元4.在中,角的对边分别是,,则的形状为A.直角三角形 B.等腰三角形或直角三角形C.等腰直角三角形 D.正三角形5.已知x,y为正实数,则()A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx•2lgyC.2lgx•lgy=2lgx+2lgy D.2lg(xy)=2lgx•2lgy6.已知与的夹角为,,,则()A. B. C. D.7.在正项等比数列中,,则()A. B. C. D.8.中,,则()A. B. C.或 D.9.若直线与直线互相平行,则的值等于()A.0或或3 B.0或3 C.0或 D.或310.在ΔABC中,内角A,B,C所对的边分别为a,b,c.若a:b:c=3:4:5,则cosA.35 B.45 C.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,已知,则____________.12.已知,则的值为__________.13.两等差数列{an}和{bn}前n项和分别为Sn,Tn,且,则=__________.14.函数的定义域为_____________.15.若,则的取值范围是________.16.对于数列满足:,其前项和为记满足条件的所有数列中,的最大值为,最小值为,则___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,底面是直角梯形,侧棱底面,垂直于和,为棱上的点,,.(1)若为棱的中点,求证://平面;(2)当时,求平面与平面所成的锐二面角的余弦值;(3)在第(2)问条件下,设点是线段上的动点,与平面所成的角为,求当取最大值时点的位置.18.如图,直三棱柱中,,,,,为垂足.(1)求证:(2)求三棱锥的体积.19.四棱锥S-ABCD中,底面ABCD为平行四边形,侧面底面ABCD,已知,为正三角形.(1)证明.(2)若,,求二面角的大小的余弦值.20.已知数列中,.(1)求证:是等比数列,求数列的通项公式;(2)已知:数列,满足①求数列的前项和;②记集合若集合中含有个元素,求实数的取值范围.21.已知函数,.(1)求函数的单调减区间;(2)若存在,使等式成立,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
①连接DB1,容易证明DB1⊥面ACD1,从而可以证明面面垂直;②连接A1B,A1C1容易证明平面BA1C1∥面ACD1,从而由线面平行的定义可得;③分析出A1P与AD1所成角的范围,从而可以判断真假;④=,C到面AD1P的距离不变,且三角形AD1P的面积不变;【题目详解】对于①,连接DB1,根据正方体的性质,有DB1⊥面ACD1,DB1⊂平面PB1D,从而可以证明平面PB1D⊥平面ACD1,正确.②连接A1B,A1C1容易证明平面BA1C1∥面ACD1,从而由线面平行的定义可得A1P∥平面ACD1,正确.③当P与线段BC1的两端点重合时,A1P与AD1所成角取最小值,当P与线段BC1的中点重合时,A1P与AD1所成角取最大值,故A1P与AD1所成角的范围是,错误;④=,C到面AD1P的距离不变,且三角形AD1P的面积不变.∴三棱锥A﹣D1PC的体积不变,正确;正确的命题为①②④.故选B.【题目点拨】本题考查空间点、线、面的位置关系,空间想象能力,中档题.2、B【解题分析】
由,得,按或分两种情况,讨论当时,求的值.【题目详解】已知等差数列的前项和为,由,得,当时,有,得,,∴时,此时.当时,有,得,,∴时,此时.故选:B【题目点拨】本题考查等差数列的求和公式及其性质的应用,也考查分类讨论的思想,属于基础题.3、B【解题分析】
试题分析:,∵数据的样本中心点在线性回归直线上,回归方程中的为1.4,∴42=1.4×2.5+a,∴=1.1,∴线性回归方程是y=1.4x+1.1,∴广告费用为6万元时销售额为1.4×6+1.1=3.5考点:线性回归方程4、A【解题分析】
先根据二倍角公式化简,再根据正弦定理化角,最后根据角的关系判断选择.【题目详解】因为,所以,,因此,选A.【题目点拨】本题考查二倍角公式以及正弦定理,考查基本分析转化能力,属基础题.5、D【解题分析】因为as+t=as•at,lg(xy)=lgx+lgy(x,y为正实数),所以2lg(xy)=2lgx+lgy=2lgx•2lgy,满足上述两个公式,故选D.6、A【解题分析】
将等式两边平方,利用平面向量数量积的运算律和定义得出关于的二次方程,解出即可.【题目详解】将等式两边平方得,,即,整理得,,解得,故选:A.【题目点拨】本题考查平面向量模的计算,在计算向量模的时候,一般将向量模的等式两边平方,利用平面向量数量积的定义和运算律进行计算,考查运算求解能力,属于中等题.7、D【解题分析】
结合对数的运算,得到,即可求解.【题目详解】由题意,在正项等比数列中,,则.故选:D.【题目点拨】本题主要考查了等比数列的性质,以及对数的运算求值,其中解答中熟记等比数列的性质,合理应用对数的运算求解是解答的关键,着重考查了推理与计算能力,属于基础题.8、A【解题分析】
根据正弦定理,可得,然后根据大边对大角,可得结果..【题目详解】由,所以由,所以故,所以故选:A【题目点拨】本题考查正弦定理的应用,属基础题.9、D【解题分析】
根据直线的平行关系,列方程解参数即可.【题目详解】由题:直线与直线互相平行,所以,,解得:或.经检验,当或时,两条直线均平行.故选:D【题目点拨】此题考查根据直线平行关系求解参数的取值,需要熟记公式,注意考虑直线重合的情况.10、D【解题分析】
设a=3k,b=4k,c=5k,利用余弦定理求cosC的值.【题目详解】设a=3k,b=4k,c=5k,所以cosC=故选D【题目点拨】本题主要考查余弦定理,意在考查学生对该知识的理解掌握水平和分析推理能力.二、填空题:本大题共6小题,每小题5分,共30分。11、84【解题分析】
根据余弦定理以及同角公式求得,再根据面积公式可得答案.【题目详解】由余弦定理可得,又,所以,所以.故答案为:84【题目点拨】本题考查了余弦定理,考查了同角公式,考查了三角形的面积公式,属于基础题.12、【解题分析】
利用诱导公式将等式化简,可求出的值.【题目详解】由诱导公式可得,故答案为.【题目点拨】本题考查利用诱导公式化简求值,在利用诱导公式处理化简求值的问题时,要充分理解“奇变偶不变,符号看象限”这个规律,考查运算求解能力,属于基础题.13、【解题分析】数列{an}和{bn}为等差数列,所以.点睛:等差数列的常考性质:{an}是等差数列,若m+n=p+q,则.14、【解题分析】函数的定义域为故答案为15、【解题分析】
利用反函数的运算法则,定义及其性质,求解即可.【题目详解】由,得所以,又因为,所以.故答案为:【题目点拨】本题考查反余弦函数的运算法则,反函数的定义域,考查学生计算能力,属于基础题.16、1【解题分析】
由,,,,,分别令,3,4,5,求得的前5项,观察得到最小值,,计算即可得到的值.【题目详解】由,,,,,可得,解得,又,,可得或,又,,,可得或5;或6;或或8;又,,,,可得或6或7;或7或8;或8或9或10或12;或10或12或1.综上可得的最大值,最小值为,则.故答案为:1.【题目点拨】本题考查数列的和的最值,注意运用元素与集合的关系,运用列举法,考查判断能力和运算能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2);(3)即点N在线段CD上且【解题分析】
(1)取线段SC的中点E,连接ME,ED.可证是平行四边形,从而有,则可得线面平行;(2)以点A为坐标原点,建立分别以AD、AB、AS所在的直线为x轴、y轴、z轴建立空间直角坐标系,求出两平面与平面的法向量,由法向量夹角的余弦值可得二面角的余弦值;(3)设,其中,求出,由MN与平面所成角的正弦值为与平面的法向量夹角余弦值的绝对值可求得结论.【题目详解】(1)证明:取线段SC的中点E,连接ME,ED.在中,ME为中位线,∴且,∵且,∴且,∴四边形AMED为平行四边形.∴.∵平面SCD,平面SCD,∴平面SCD.(2)解:如图所示以点A为坐标原点,建立分别以AD、AB、AS所在的直线为x轴、y轴、z轴建立空间直角坐标系,则,,,,,由条件得M为线段SB近B点的三等分点.于是,即,设平面AMC的一个法向量为,则,将坐标代入并取,得.另外易知平面SAB的一个法向量为,所以平面AMC与平面SAB所成的锐二面角的余弦为.(3)设,其中.由于,所以.所以,可知当,即时分母有最小值,此时有最大值,此时,,即点N在线段CD上且.【题目点拨】本题考查线面平行的证明,考查求二面角与线面角.求空间角时,一般建立空间直角坐标系,由平面法向量的夹角求得二面角,由直线的方向向量与平面法向量的夹角与线面角互余可求得线面角.18、(1)见证明;(2)【解题分析】
(1)先证得平面,由此证得,结合题意所给已知条件,证得平面,从而证得.(2)首先证得平面,由计算出三棱锥的体积.【题目详解】(1)证明:,∴,又,从而平面∵//,∴平面,平面,∴又,∴平面,于是(2)解:,∴平面∴【题目点拨】本小题主要考查线线垂直的证明,考查线面垂直的判定定理的运用,考查三棱锥体积的求法,属于中档题.19、(1)证明见解析.(2)二面角的余弦值为.【解题分析】
(1)作于点,连接,根据面面垂直性质可得底面ABCD,由三角形全等性质可得,进而根据线面垂直判定定理证明平面,即可证明.(2)根据所给角度和线段关系,可证明以均为等边三角形,从而取中点,连接,即可由线段长结合余弦定理求得二面角的大小.【题目详解】(1)证明:作于点,连接,如下图所示:因为侧面底面ABCD,则底面ABCD,因为为正三角形,则,所以,即,又因为,所以,而,所以平面,所以.(2)由(1)可知,,,所以,又因为,所以,即为中点.由等腰三角形三线合一可知,在中,由等腰三角形三线合一可得,所以均为边长为2的等边三角形,取中点,连接,如下图所示:由题意可知,即为二面角的平面角,所以在中由余弦定理可得,即二面角的余弦值为.【题目点拨】本题考查了线面垂直的判定定理,面面垂直的性质应用,二面角夹角的去找法及由余弦定理求二面角夹角的余弦值,属于中档题.20、(1)证明见解析,(2)①②【解题分析】
(1)计算得到:得证.(2)①计算的通项公式为,利用错位相减法得到.②将代入集合M,化简并分离参数得,确定数列的单调性,根据集合中含有个元素得到答案.【题目详解】(1),为等比数列,其中首项,公比为.所以,.(2)①数列的通项公式为①②①-②化简后得.②将代入得化简并分离参数得,设,则易知由于中含有个元素,所以实数要小于等于第5大的数,且比第6大的数大.,,综上所述.【题目点拨】本题考查了数列的证明,数列的通项公式,错位相减法,数列的单调性,综合性强计算量大,意在考查学生的计算能力和综合应用能力.21、(1),.(2)【解题分析】
(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学术出版行业市场调研分析报告
- 大数据分析及应用项目教程(Spark SQL)(微课版) 教案全套 许慧 单元1-6 大数据分析概述-Zepplin数据可视化
- 药用薄荷市场分析及投资价值研究报告
- 自推进式扫路机细分市场深度研究报告
- 冷链果蔬物流行业市场调研分析报告
- 移动电话用屏幕保护膜市场发展前景分析及供需格局研究预测报告
- 电子货币收款机细分市场深度研究报告
- 电子闪光器开关市场分析及投资价值研究报告
- 衬衫袖扣市场分析及投资价值研究报告
- 绘画便笺簿项目营销计划书
- 韩国《寄生虫》电影鉴赏解读
- 排球训练总结(4篇)
- 石油和天然气输送行业物联网与智能化技术
- 高考英语高频词汇汇总
- 预防校园欺凌主题班会课件
- 六年级语文下册《记一次体育比赛》教案设计
- 文档系统需求方案(完整版)资料
- 建筑陶瓷制造行业技术趋势分析
- 小学六年级地方课程《可爱的四川》教案
- 人教版九年级数学上册《反证法》说课稿
- 药品微生物检验基础知识培训课件
评论
0/150
提交评论