版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省惠州市第三中学高一数学第二学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数(,,)的部分图象如图所示,则()A. B. C. D.2.如果点位于第四象限,则角是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角3.若满足条件的三角形ABC有两个,那么a的取值范围是()A. B. C. D.4.设,则()A. B. C. D.5.数列1,,,…,的前n项和为A. B. C. D.6.是等差数列的前n项和,如果,那么的值是()A.12 B.24 C.36 D.487.在《九章算术》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称之为阳马.如图,若四棱锥P﹣ABCD为阳马,侧棱PA⊥底面ABCD,PA=AB=AD,E为棱PA的中点,则异面直线AB与CE所成角的正弦值为()A. B. C. D.8.已知等比数列中,各项都是正数,且成等差数列,则等于()A. B. C. D.9.已知定义在上的偶函数满足:当时,,若,则的大小关系是()A. B. C. D.10.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为,则第八个单音的频率为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知为等差数列,为其前项和,若,则,则______.12.项数为的等差数列,若奇数项之和为88,偶数项之和为77,则实数的值为_____.13.已知向量,满足,且在方向上的投影是,则实数_______.14.在正方体的体对角线与棱所在直线的位置关系是______.15.不等式的解集为_____________________。16.已知四棱锥的底面是边长为的正方形,侧棱长均为,若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的侧面积为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,a,b,c分别为角A,B,C的对边,且,,,求角A的大小.18.设为等差数列的前项和,已知,.(1)求数列的通项公式;(2)令,且数列的前项和为,求证:.19.已知函数.(1)求的最小正周期;(2)求的单调增区间;(3)若,求的最大值与最小值.20.已知的角、、所对的边分别是、、,设向量,,.(1)若,求证:为等腰三角形;(2)若,边长,角,求的面积.21.已知数列的前项和为,,.(1)证明:数列是等比数列,并求其通项公式;(2)令,若对恒成立,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】试题分析:由图可知,,∴,又,∴,∴,又.∴.考点:由图象确定函数解析式.2、C【解题分析】
由点位于第四象限列不等式,即可判断的正负,问题得解.【题目详解】因为点位于第四象限所以,所以所以角是第三象限角故选C【题目点拨】本题主要考查了点的坐标与点的位置的关系,还考查了等价转化思想及三角函数值的正负与角的终边的关系,属于基础题.3、C【解题分析】
利用正弦定理,用a表示出sinA,结合C的取值范围,可知;根据存在两个三角形的条件,即可求得a的取值范围。【题目详解】根据正弦定理可知,代入可求得因为,所以若满足有两个三角形ABC则所以所以选C【题目点拨】本题考查了正弦定理在解三角形中的简单应用,判断三角形的个数情况,属于基础题。4、C【解题分析】
首先化简,可得到大小关系,再根据,即可得到的大小关系.【题目详解】,,.所以.故选:C【题目点拨】本题主要考查指数,对数的比较大小,熟练掌握指数和对数函数的性质为解题的关键,属于简单题.5、B【解题分析】
数列为,则所以前n项和为.故选B6、B【解题分析】
由等差数列的性质:若m+n=p+q,则即可得.【题目详解】故选B【题目点拨】本题考查等比数列前n项和的求解和性质的应用,是基础题型,解题中要注意认真审题,注意下标的变化规律,合理地进行等价转化.7、B【解题分析】
由异面直线所成角的定义及求法,得到为所求,连接,由为直角三角形,即可求解.【题目详解】在四棱锥中,,可得即为异面直线与所成角,连接,则为直角三角形,不妨设,则,所以,故选B.【题目点拨】本题主要考查了异面直线所成角的作法及求法,其中把异面直线所成的角转化为相交直线所成的角是解答的关键,着重考查了推理与运算能力,属于基础题.8、C【解题分析】
由条件可得a3=a1+2a2,即a1q2=a1+2a1q,解得q=1.代入所求运算求得结果.【题目详解】∵等比数列{an}中,各项都是正数,且a1,a3,2a2成等差数列,故公比q不等于1.∴a3=a1+2a2,即a1q2=a1+2a1q,解得q=1.∴3+2,故选:C.【题目点拨】本题主要考查等差中项的性质,等比数列的通项公式,考查了整体化的运算技巧,属于基础题.9、C【解题分析】
根据函数的奇偶性将等价变形为,再根据函数在上单调性判断函数值的大小关系,从而得出正确选项.【题目详解】解因为函数为偶函数,故,因为,,所以,因为函数在上单调增,故,故选C.【题目点拨】本题考查了函数单调性与奇偶性的运用,解题的关键是要能根据奇偶性将函数值进行转化.10、B【解题分析】
根据等比数列通项公式,求得第八个单音的频率.【题目详解】根据等比数列通项公式可知第八个单音的频率为.故选:B.【题目点拨】本小题主要考查等比数列的通项公式,考查中国古代数学文化,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
利用等差中项的性质求出的值,再利用等差中项的性质求出的值.【题目详解】由等差中项的性质可得,得,由等差中项的性质得,.故答案为:.【题目点拨】本题考查等差数列中项的计算,充分利用等差中项的性质进行计算是解题的关键,考查计算能力,属于基础题.12、7【解题分析】
奇数项和偶数项相减得到和,故,代入公式计算得到答案.【题目详解】由题意知:,前式减后式得到:,后式减前式得到故:解得故答案为:7【题目点拨】本题考查了等差数列的奇数项和与偶数项和关系,通过变换得到是解题的关键.13、1【解题分析】
在方向上的投影为,把向量坐标代入公式,构造出关于的方程,求得.【题目详解】因为,所以,解得:,故填:.【题目点拨】本题考查向量的数量积定义中投影的概念、及向量数量积的坐标运算,考查基本运算能力.14、异面直线【解题分析】
根据异面直线的定义,作出图形,即可求解,得到答案.【题目详解】如图所示,与不在同一平面内,也不相交,所以体对角线与棱是异面直线.【题目点拨】本题主要考查了异面直线的概念及其判定,其中熟记异面直线的定义是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.15、或【解题分析】
利用一元二次函数的图象或转化为一元一次不等式组解一元二次不等式.【题目详解】由,或,所以或,不等式的解集为或.【题目点拨】本题考查解一元二次不等式,考查计算能力,属于基本题.16、【解题分析】
先求出四棱锥的底面对角线的长度,结合勾股定理可求出四棱锥的高,然后由圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,可知四条侧棱的中点连线为正方形,其对角线为圆柱底面的直径,圆柱的高为四棱锥的高的一半,分别求解可求出圆柱的侧面积.【题目详解】由题可知,四棱锥是正四棱锥,四棱锥的四条侧棱的中点连线为正方形,边长为,该正方形对角线的长为1,则圆柱的底面半径为,四棱锥的底面是边长为的正方形,其对角线长为2,则四棱锥的高为,故圆柱的高为1,所以圆柱的侧面积为.【题目点拨】本题主要考查了空间几何体的结构特征,考查了学生的空间想象能力与计算求解能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解题分析】
由正弦定理得,即得,再利用余弦定理求解.【题目详解】因为在三角形ABC中,由正弦定理得.又因为,所以得,由余弦定理得.又三角形内角在.故角A为.【题目点拨】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平.18、(1),(2)见解析【解题分析】
(1)根据等差数列的通项公式得到结果;(2)根据第一问得到,由裂项求和得到结果.【题目详解】(1)设等差数列的公差为,由题意得,,解得,,则,.(2)由得∴.【题目点拨】这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等。19、(1);(2)[kπ﹣,kπ+],k∈Z;(3)f(x)=2,f(x)=﹣1【解题分析】
(1)利用三角恒等变换,化简函数的解析式,再利用正弦函数的周期性,得出结论;(2)利用正弦函数的单调性,求出f(x)的单调增区间;(3)利用正弦函数的定义域和值域,求得当时,f(x)的最大值与最小值.【题目详解】(1)∵函数f(x)=sin4x+2sinxcosx﹣cos4x=(sin4x﹣cos4x)+sin2x=﹣cos2x+sin2x=2sin(2x﹣),∴f(x)的最小正周期为=π.(2)令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得f(x)的单调增区间为[kπ﹣,kπ+],k∈Z.(3)若,则2x﹣∈,当2x﹣=时,f(x)=2;当2x﹣=﹣时,f(x)=.【题目点拨】本题主要考查三角恒等变换,正弦函数的周期性、单调性,正弦函数的定义域和值域,属于中档题.20、(1)见解析(2)【解题分析】
⑴因为,所以,即,其中是的外接圆半径,所以,所以为等腰三角形.⑵因为,所以.由余弦定理可知,,即解方程得:(舍去)所以.21、(1)证明见解析,(2)【解题分析】
(1)当时,结合可求得;当且时,利用可整理得,可证得数列为等比数列;根据等比数列通项公式可求得结果;(2)根据等比数列求和公式求得,代入可得;分别在为奇数和为偶数两种情况下
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024特岗教师聘用及教师团队协作能力提升服务合同3篇
- 2025年度新能源车辆采购及维护服务合同范本2篇
- 2025年度智能家居系统代理商合作协议4篇
- 2025年度新能源汽车研发出资人合作协议4篇
- 2025年度旅游景区特色商品档口租赁经营合同3篇
- 2025年度水电工程安全监测系统安装与维护服务合同3篇
- 2024版食堂承包合同协议范文
- 2025年度特殊岗位人员辞退及安置协议范本4篇
- 2025年度智能机器人研发股权合作协议4篇
- 2025年度文化产业园区运营管理合同3篇
- 小学数学六年级解方程练习300题及答案
- 电抗器噪声控制与减振技术
- 中医健康宣教手册
- 2024年江苏扬州市高邮市国有企业招聘笔试参考题库附带答案详解
- 消费医疗行业报告
- 品学课堂新范式
- GB/T 1196-2023重熔用铝锭
- 运输行业员工岗前安全培训
- 公路工程安全风险辨识与防控手册
- 幼儿园教师培训:计数(数数)的核心经验
- 如何撰写和发表高水平的科研论文-good ppt
评论
0/150
提交评论