2024届北京市东城171中高一数学第二学期期末质量跟踪监视试题含解析_第1页
2024届北京市东城171中高一数学第二学期期末质量跟踪监视试题含解析_第2页
2024届北京市东城171中高一数学第二学期期末质量跟踪监视试题含解析_第3页
2024届北京市东城171中高一数学第二学期期末质量跟踪监视试题含解析_第4页
2024届北京市东城171中高一数学第二学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届北京市东城171中高一数学第二学期期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.终边在轴上的角的集合()A. B.C. D.2.设为数列的前项和,,则的值为()A. B. C. D.不确定3.已知圆,圆,分别为圆上的点,为轴上的动点,则的最小值为()A. B. C. D.4.不等式的解集为,则不等式的解集为()A.或 B. C. D.或5.在中,若,,,则等于()A.3 B.4 C.5 D.66.己知关于的不等式解集为,则突数的取值范围为()A. B.C. D.7.关于某设备的使用年限(单位:年)和所支出的维修费用(单位:万元)有如下统计数据表:使用年限维修费用根据上表可得回归直线方程,据此估计,该设备使用年限为年时所支出的维修费用约是()A.万元 B.万元 C.万元 D.万元8.在平面直角坐标系xOy中,直线的倾斜角为()A. B. C. D.9.已知角以坐标系中为始边,终边与单位圆交于点,则的值为()A. B. C. D.10.已知的三边满足,则的内角C为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β,下列四个命题正确的是________.①若l⊥β,则α⊥β;②若α⊥β,则l⊥m;③若l∥β,则α∥β;④若α∥β,则l∥m.12.若等比数列满足,且公比,则_____.13.在中,,是线段上的点,,若的面积为,当取到最大值时,___________.14.数列满足,,则___________.15.向量.若向量,则实数的值是________.16.将十进制数30化为二进制数为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.解关于的方程:18.函数在一个周期内的图象如图所示,为图象的最高点,、为图象与轴的交点,且为正三角形.(1)求的值及函数的值域;(2)若,且,求的值.19.已知,,(1)若,求;(2)求的最大值,并求出对应的x的值.20.如图是某地某公司名员工的月收入后的直方图.根据直方图估计:(1)该公司月收入在元到元之间的人数;(2)该公司员工的月平均收入.21.已知函数.(1)求函数的最小正周期和值域;(2)设为的三个内角,若,,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

根据轴线角的定义即可求解.【题目详解】A项,是终边在轴正半轴的角的集合;B项,是终边在轴的角的集合;C项,是终边在轴正半轴的角的集合;D项,是终边在轴的角的集合;综上,D正确.故选:D【题目点拨】本题主要考查了轴线角的判断,属于基础题.2、C【解题分析】

令,由求出的值,再令时,由得出,两式相减可推出数列是等比数列,求出该数列的公比,再利用等比数列求和公式可求出的值.【题目详解】当时,,得;当时,由得出,两式相减得,可得.所以,数列是以为首项,以为公比的等比数列,因此,.故选:C.【题目点拨】本题考查利用前项和求数列通项,同时也考查了等比数列求和,在递推公式中涉及与时,可利用公式求解出,也可以转化为来求解,考查推理能力与计算能力,属于中等题.3、D【解题分析】

求出圆关于轴的对称圆的圆心坐标A,以及半径,然后求解圆A与圆的圆心距减去两个圆的半径和,即可求得的最小值,得到答案.【题目详解】如图所示,圆关于轴的对称圆的圆心坐标,半径为1,圆的圆心坐标为,,半径为3,由图象可知,当三点共线时,取得最小值,且的最小值为圆与圆的圆心距减去两个圆的半径之和,即,故选D.【题目点拨】本题主要考查了圆的对称圆的方程的求解,以及两个圆的位置关系的应用,其中解答中合理利用两个圆的位置关系是解答本题的关键,着重考查了数形结合法,以及推理与运算能力,属于基础题.4、A【解题分析】不等式的解集为,的两根为,,且,即,解得则不等式可化为解得故选5、D【解题分析】

直接运用正弦定理求解即可.【题目详解】由正弦定理可知中:,故本题选D.【题目点拨】本题考查了正弦定理的应用,考查了数学运算能力.6、C【解题分析】

利用绝对值的几何意义求解,即表示数轴上与和-2的距离之和,其最小值为.【题目详解】∵,∴由解集为,得,解得.故选C.【题目点拨】本题考查绝对值不等式,考查绝对值的性质,解题时可按绝对值定义去绝对值符号后再求解,也可应用绝对值的几何意义求解.不等式解集为,可转化为的最小值不小于1,这是解题关键.7、C【解题分析】

计算出和,将点的坐标代入回归直线方程,求得实数的值,然后将代入回归直线方程可求得结果.【题目详解】由表格中的数据可得,,由于回归直线过样本中心点,则,解得,所以,回归直线方程为,当时,.因此,该设备使用年限为年时所支出的维修费用约是万元.故选:C.【题目点拨】本题考查利用回归直线方程对总体数据进行估计,充分利用结论“回归直线过样本的中心点”的应用,考查计算能力,属于基础题.8、B【解题分析】

设直线的倾斜角为,,,可得,解得.【题目详解】设直线的倾斜角为,,.,解得.故选:B.【题目点拨】本题考查直线的倾斜角与斜率之间的关系、三角函数求值,考查推理能力与计算能力,属于基础题.9、A【解题分析】

根据题意可知的值,从而可求的值.【题目详解】因为,,则.故选A.【题目点拨】本题考查任意角的三角函数的基本计算,难度较易.若终边与单位圆交于点,则.10、C【解题分析】原式可化为,又,则C=,故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、①【解题分析】

由线面的平行垂直的判定和性质一一检验即可得解.【题目详解】由平面与平面垂直的判定可知,①正确;②中,当α⊥β时,l,m可以垂直,也可以平行,也可以异面;③中,l∥β时,α,β可以相交;④中,α∥β时,l,m也可以异面.故答案为①.【题目点拨】本题主要考查了线面、面面的垂直和平行位置关系的判定和性质,属于基础题.12、.【解题分析】

利用等比数列的通项公式及其性质即可得出.【题目详解】,故答案为:1.【题目点拨】本题考查了等比数列的通项公式及其性质,考查了推理能力与计算能力,属于容易题.13、【解题分析】

由三角形的面积公式得出,设,由可得出,利用基本不等式可求出的值,利用等号成立可得出、的值,再利用余弦利用可得出的值.【题目详解】由题意可得,解得,设,则,可得,由基本不等式可得,当且仅当时,取得最大值,,,由余弦定理得,解得.故答案为.【题目点拨】本题考查余弦定理解三角形,同时也考查了三角形的面积公式以及利用基本不等式求最值,在利用基本不等式求最值时,需要结合已知条件得出定值条件,同时要注意等号成立的条件,考查分析问题和解决问题的能力,属于中等题.14、2【解题分析】

利用递推公式求解即可.【题目详解】由题得.故答案为2【题目点拨】本题主要考查利用递推公式求数列中的项,意在考查学生对这些知识的理解掌握水平,属于基础题.15、-3【解题分析】

试题分析:∵,∴,又∵,∴,∴,∴考点:本题考查了向量的坐标运算点评:熟练运用向量的坐标运算是解决此类问题的关键,属基础题16、【解题分析】

利用除取余法可将十进制数化为二进制数.【题目详解】利用除取余法得因此,,故答案为.【题目点拨】本题考查将十进制数转化为二进制数,将十进制数转化为进制数,常用除取余法来求解,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解题分析】

根据方程解出或,利用三角函数的定义解出,再根据终边相同角的表示即可求出.【题目详解】由,得,所以或,所以或,所以的解集为:.【题目点拨】本题考查了三角方程的解法,终边相同角的表示,反三角函数的定义,考查计算能力,属于基础题.18、(2),函数的值域为;(2).【解题分析】

(1)将函数化简整理,根据正三角形的高为,可求出,进而可得其值域;(2)由得到,再由求出,进而可求出结果.【题目详解】(1)由已知可得,又正三角形的高为,则,所以函数的最小正周期,即,得,函数的值域为.(2)因为,由(1)得,即,由,得,即=,故.【题目点拨】本题主要考查三角函数的图象和性质,熟记正弦函数的性质即可求解,属于基础题型.19、(Ⅰ)(II)1,此时【解题分析】

(Ⅰ)根据平面向量的坐标运算,利用平行公式求出tanx的值;(Ⅱ)利用平面向量的坐标运算,利用模长公式和三角函数求出最大值.【题目详解】解:(Ⅰ)计算-=(3,4),由∥(-)得4cosx-3sinx=0,∴tanx==;(Ⅱ)+=(cosx+1,sinx),∴=(cosx+1)1+sin1x=1+1cosx,|+|=,当cosx=1,即x=1kπ,k∈Z时,|+|取得最大值为1.【题目点拨】本题考查了平面向量的坐标运算与数量积运算问题,是基础题.20、(1);(2).【解题分析】

(1)根据频率分布直方图得出该公司月收入在元到元的员工所占的频率,再乘以可得出所求结果;(2)将每个矩形底边的中点值乘以对应矩形的面积,再将所得的积全部相加可得出该公司员工月收入的平均数.【题目详解】(1)根据频率分布直方图知,该公司月收入在元到元的员工所占的频率为:,因此,该公司月收入在元到元之间的人数为;(2)据题意该公司员工的平均收入为:(元).【题目点拨】本题考查频率分布直方图的应用,考查频数的计算以及平均数的计算,解题时要注意频数、平均数的计算原则,考查计算能力,属于基础题.21、(1)周期,值域为;(2).【解题分析】

(1)利用二倍角降幂公式与辅助角公式将函数的解析式进行化简,利用周

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论