2024届广西龙胜中学数学高一第二学期期末学业水平测试模拟试题含解析_第1页
2024届广西龙胜中学数学高一第二学期期末学业水平测试模拟试题含解析_第2页
2024届广西龙胜中学数学高一第二学期期末学业水平测试模拟试题含解析_第3页
2024届广西龙胜中学数学高一第二学期期末学业水平测试模拟试题含解析_第4页
2024届广西龙胜中学数学高一第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广西龙胜中学数学高一第二学期期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在区间上随机地取一个数,则事件“”发生的概率为()A. B. C. D.2.预测人口的变化趋势有多种方法,“直接推算法”使用的公式是(),为预测人口数,为初期人口数,为预测期内年增长率,为预测期间隔年数.如果在某一时期有,那么在这期间人口数A.呈下降趋势 B.呈上升趋势 C.摆动变化 D.不变3.下列结论中错误的是()A.若,则 B.函数的最小值为2C.函数的最小值为2 D.若,则函数4.某学生四次模拟考试时,其英语作文的减分情况如下表:考试次数x

1

2

3

4

所减分数y

4.5

4

3

2.5

显然所减分数y与模拟考试次数x之间有较好的线性相关关系,则其线性回归方程为()A.y=0.7x+5.25 B.y=﹣0.6x+5.25 C.y=﹣0.7x+6.25 D.y=﹣0.7x+5.255.已知是的边上的中点,若向量,,则向量等于()A. B. C. D.6.记为等差数列的前n项和.若,,则等差数列的公差为()A.1 B.2 C.4 D.87.不等式4xA.-∞,-12C.-∞,-328.向正方形ABCD内任投一点P,则“的面积大于正方形ABCD面积的”的概率是()A. B. C. D.9.已知满足,且,那么下列选项中一定成立的是()A. B. C. D.10.已知函数的图像关于直线对称,则可能取值是().A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知等比数列中,,,若数列满足,则数列的前项和=________.12.终边经过点,则_____________13.计算:______.14.已知向量,,,则_________.15.在中,角为直角,线段上的点满足,若对于给定的是唯一确定的,则_______.16.若直线与圆相交于,两点,且(其中为原点),则的值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数为奇函数.(1)求实数的值并证明函数的单调性;(2)解关于不等式:.18.在平面直角坐标系中,已知点,,坐标分别为,,,为线段上一点,直线与轴负半轴交于点,直线与交于点.(1)当点坐标为时,求直线的方程;(2)求与面积之和的最小值.19.在中,内角A,B,C的对边分别是ɑ,b,c,已知,.(1)求角C;(2)求面积的最大值.20.已知的顶点,边上的中线所在直线方程为,边上的高,所在直线方程为.(1)求顶点的坐标;(2)求直线的方程.21.在平面直角坐标系xOy中,已知圆,三个点,B、C均在圆上,(1)求该圆的圆心的坐标;(2)若,求直线BC的方程;(3)设点满足四边形TABC是平行四边形,求实数t的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】由得,,所以,由几何概型概率的计算公式得,,故选.考点:1.几何概型;2.对数函数的性质.2、A【解题分析】

可以通过与之间的大小关系进行判断.【题目详解】当时,,所以,呈下降趋势.【题目点拨】判断变化率可以通过比较初始值与变化之后的数值之间的大小来判断.3、B【解题分析】

根据均值不等式成立的条件逐项分析即可.【题目详解】对于A,由知,,所以,故选项A本身正确;对于B,,但由于在时不可能成立,所以不等式中的“”实际上取不到,故选项B本身错误;对于C,因为,当且仅当,即时,等号成立,故选项C本身正确;对于D,由知,,所以lnx+=-2,故选项D本身正确.故选B.【题目点拨】本题主要考查了均值不等式及不等式取等号的条件,属于中档题.4、D【解题分析】试题分析:先求样本中心点,利用线性回归方程一定过样本中心点,代入验证,可得结论.解:先求样本中心点,,由于线性回归方程一定过样本中心点,代入验证可知y=﹣0.7x+5.25,满足题意故选D.点评:本题考查线性回归方程,解题的关键是利用线性回归方程一定过样本中心点,属于基础题.5、C【解题分析】

根据向量加法的平行四边形法则,以及平行四边形的性质可得,,解出向量.【题目详解】根据平行四边形法则以及平行四边形的性质,有.故选.【题目点拨】本题考查向量加法的平行四边形法则以及平行四边形的性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.6、B【解题分析】

利用等差数列的前n项和公式、通项公式列出方程组,能求出等差数列{an}的公差.【题目详解】∵为等差数列的前n项和,,,∴,解得d=2,a1=5,∴等差数列的公差为2.故选:B.【题目点拨】本题考查等差数列的公差,此类问题根据题意设公差和首项为d、a1,列出方程组解出即可,属于基础题.7、B【解题分析】

因式分解不等式,可直接求得其解集。【题目详解】∵4x2-4x-3≤0,∴【题目点拨】本题考查求不等式解集,属于基础题。8、C【解题分析】

由题意,求出满足题意的点所在区域的面积,利用面积比求概率.【题目详解】由题意,设正方形的边长为1,则正方形的面积为1,要使的面积大于正方形面积的,需要到的距离大于,即点所在区域面积为,由几何概型得,的面积大于正方形面积的的概率为.故选:C.【题目点拨】本题考查几何概型的概率求法,解题的关键是明确概率模型,属于基础题.9、D【解题分析】

首先根据题意得到,,结合选项即可找到答案.【题目详解】因为,所以.因为,所以.故选:D【题目点拨】本题主要考查不等式的性质,属于简单题.10、D【解题分析】

根据正弦型函数的对称性,可以得到一个等式,结合四个选项选出正确答案.【题目详解】因为函数的图像关于直线对称,所以有,当时,,故本题选D.【题目点拨】本题考查了正弦型函数的对称性,考查了数学运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】试题分析:根据题意,由于等比数列中,,,则可知公比为,那么可知等比数列中,,,故可知,那么可知数列的前项和=1=,故可知答案为.考点:等比数列点评:主要是考查了等比数列的通项公式以及数列的求和的运用,属于基础题.12、【解题分析】

根据正弦值的定义,求得正弦值.【题目详解】依题意.故答案为:【题目点拨】本小题主要考查根据角的终边上一点的坐标求正弦值,属于基础题.13、【解题分析】

在分式的分子和分母中同时除以,然后利用常见的数列极限可计算出所求极限值.【题目详解】.故答案为:.【题目点拨】本题考查数列极限的计算,熟悉一些常见数列极限是解题的关键,考查计算能力,属于基础题.14、【解题分析】

根据向量平行交叉相乘相减等于0即可.【题目详解】因为两个向量平行,所以【题目点拨】本题主要考查了向量的平行,即,若则,属于基础题.15、【解题分析】

设,根据已知先求出x的值,再求的值.【题目详解】设,则.依题意,若对于给定的是唯一的确定的,函数在(1,)是增函数,在(,+)是减函数,所以,此时,.故答案为【题目点拨】本题主要考查对勾函数的图像和性质,考查差角的正切的计算和同角的三角函数的关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.16、【解题分析】

首先根据题意画出图形,再根据求出直线的倾斜角,求斜率即可.【题目详解】如图所示直线与圆恒过定点,不妨设,因为,所以,两种情况讨论,可得,.所以斜率.故答案为:【题目点拨】本题主要考查直线与圆的位置关系,同时考查了数形结合的思想,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2,证明见解析(2)【解题分析】

(1)由函数为奇函数,得,化简得,所以,.再转化函数为,由定义法证明单调性.(2)将可化为,构造函数,再由在上是单调递增函数求解.【题目详解】(1)根据题意,因为函数为奇函数,所以,即,即,即,化简得,所以.所以,证明:任取且,则因为,所以,,,,所以∴,所以在上单调递增;(2)可化为,设函数,由(1)可知,在上也是单调递增,所以,即,解得.【题目点拨】本题主要考查了函数的单调性和奇偶性的应用,还考查了运算求解的能力,属于中档题.18、(1);(2).【解题分析】

(1)求出的直线方程后可得的坐标,再求出的直线方程和的直线方程后可得的坐标,从而得到直线的直线方程.(2)直线的方程为,设,求出的直线方程后可得的坐标,从而可用表示,换元后利用基本不等式可求的最小值.【题目详解】(1)当时,直线的方程为,所以,直线的方程为①,又直线的方程为②,①②联立方程组得,所以直线的方程为.(2)直线的方程为,设,直线的方程为,所以.因为在轴负半轴上,所以,=,.令,则,(当且仅当),而当时,,故的最小值为.【题目点拨】直线方程有五种形式,常用的形式有点斜式、斜截式、截距式、一般式,垂直于的轴的直线没有点斜式、斜截式和截距式,垂直于轴的直线没有截距式,注意根据题设所给的条件选择合适的方程的形式.直线方程中的最值问题,注意可选择合适的变量(如斜率、倾斜角、动点的横坐标或纵坐标等)构建目标函数,再利用基本不等式或函数的单调性等求目标函数的最值.19、(1);(2)【解题分析】

(1)利用正弦定理边化角可求得,由的范围可求得结果;(2)利用余弦定理和基本不等式可求得的最大值,代入三角形面积公式可求得结果.【题目详解】(1)由正弦定理得:,即又(2)由余弦定理得:(当且仅当时取等号),即面积的最大值为【题目点拨】本题考查解三角形的相关知识,涉及到正弦定理边化角的应用、余弦定理解三角形、基本不等式求积的最大值、三角形面积公式的应用;求解面积的最大值的关键是能够在余弦定理的基础上,利用基本不等式来求解两边之积的最大值.20、(1);(2)【解题分析】

(1)根据边上的高所在直线方程求出的斜率,由点斜式可得的方程,与所在直线方程联立即可得结果;(2)设则,代入中,可求得点坐标,利用两点式可得结果.【题目详解】(1)由边上的高所在直线方程为得,所以直线AB所在的直线方程为,即联立解得所以顶点的坐标为(4,3)(2)因为在直线上,所以设则,代入中,得所以则直线的方程为,即【题目点拨】本题主要考查直线的方程,直线方程主要有五种形式,每种形式的直线方程都有其局限性,斜截式与点斜式要求直线斜率存在,所以用这两种形式设直线方程时要注意讨论斜是否存在;截距式要注意讨论截距是否为零;两点式要注意讨论直线是否与坐标轴平行;求直线方程的最终结果往往需要化为一般式.21、(1)(2)或(3),【解题分析】

(1)将点代入圆的方程可得的值,继而求出半径和圆心(2)可设直线方程为:,可得圆心到直线的距离,结合弦心距定理可得的值,求出直线方程(3)设,,,,因为平行四边形的对角线互相平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论