




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届福建省建瓯市第二中学数学高一下期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.的斜二测直观图如图所示,则原的面积为()A. B.1 C. D.22.在中,,,,,则()A.或 B. C. D.3.在△ABC中,c=,A=75°,B=45°,则△ABC的外接圆面积为A. B.π C.2π D.4π4.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的体积为()A.54 B. C.90 D.815.半圆的直径,为圆心,是半圆上不同于的任意一点,若为半径上的动点,则的最小值是()A.2 B.0 C.-2 D.46.如图,在四棱锥中,底面,底面为直角梯形,,,则直线与平面所成角的大小为()A. B. C. D.7.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.8.已知直线x+ay+4=0与直线ax+4y-3=0互相平行,则实数a的值为()A.±2 B.2 C.-2 D.09.函数(其中)的图象如图所示,为了得到的图象,则只要将的图象()A.向右平移 B.向右平移C.向左平移 D.向左平移10.已知,,,则的最小值为A. B. C. D.4二、填空题:本大题共6小题,每小题5分,共30分。11.=__________.12.已知,则的最小值为__________.13.在中,分别是角的对边,已知成等比数列,且,则的值为________.14.在上,满足的的取值范围是______.15.已知向量,.若向量与垂直,则________.16.某四棱锥的三视图如图所示,如果网格纸上小正方形的边长为1,那么该四棱锥最长棱的棱长为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列an满足an+1=2an(1)求证:数列bn(2)求数列an的前n项和为S18.如图1,已知菱形的对角线交于点,点为线段的中点,,,将三角形沿线段折起到的位置,,如图2所示.(Ⅰ)证明:平面平面;(Ⅱ)求三棱锥的体积.19.设二次函数.(1)若对任意实数,恒成立,求实数x的取值范围;(2)若存在,使得成立,求实数m的取值范围.20.已知向量,满足:,,.(Ⅰ)求与的夹角;(Ⅱ)求.21.中,角的对边分别为,且.(I)求的值;(II)求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
根据直观图可计算其面积为,原的面积为,由得结论.【题目详解】由题意可得,所以由,即.故选:D.【题目点拨】本题考查了斜二侧画直观图,三角形的面积公式,需要注意的是与原图与直观图的面积之比为,属于基础题.2、C【解题分析】
由三角形面积公式可得,进而可得解.【题目详解】在中,,,,,可得,所以,所以【题目点拨】本题主要考查了三角形的面积公式,属于基础题.3、B【解题分析】
根据正弦定理可得2R=,解得R=1,故△ABC的外接圆面积S=πR2=π.【题目详解】在△ABC中,A=75°,B=45°,∴C=180°-A-B=60°.设△ABC的外接圆半径为R,则由正弦定理可得2R=,解得R=1,故△ABC的外接圆面积S=πR2=π.故选B.【题目点拨】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.4、A【解题分析】
由已知中的三视图可得:该几何体是一个以正方形为底面的斜四棱柱,进而得到答案.【题目详解】由三视图可知,该多面体是一个以正方形为底面的斜四棱柱,四棱柱的底面是边长为3的正方形,四棱柱的高为6,则该多面体的体积为.故选:A.【题目点拨】本题考查三视图知识及几何体体积的计算,根据三视图判断几何体的形状,再由几何体体积公式求解,属于简单题.5、C【解题分析】
将转化为,利用向量数量积运算化简,然后利用基本不等式求得表达式的最小值.【题目详解】画出图像如下图所示,,等号在,即为的中点时成立.故选C.【题目点拨】本小题主要考查平面向量加法运算,考查平面向量的数量积运算,考查利用基本不等式求最值,属于中档题.6、A【解题分析】
取中点,中点,连接,先证明为所求角,再计算其大小.【题目详解】取中点,中点,连接.设易知:平面平面易知:四边形为平行四边形平面,即为直线与平面所成角故答案选A【题目点拨】本题考查了线面夹角,先找出线面夹角是解题的关键.7、B【解题分析】
该几何体由上下两部分组成的,上面是一个圆锥,下面是一个正方体,由体积公式直接求解.【题目详解】该几何体由上下两部分组成的,上面是一个圆锥,下面是一个正方体.∴该几何体的体积V64.故选:B.【题目点拨】本题考查了正方体与圆锥的组合体的三视图还原问题及体积计算公式,考查了推理能力与计算能力,属于基础题.8、A【解题分析】
根据两直线平性的必要条件可得4-a【题目详解】∵直线x+ay+4=0与直线ax+4y-3=0互相平行;∴4×1-a⋅a=0,即4-a2=0当a=2时,直线分别为x+2y+4=0和2x+4y-3=0,平行,满足条件当a=-2时,直线分别为x-2y+4=0和-2x+4y-3=0,平行,满足条件;所以a=±2;故答案选A【题目点拨】本题考查两直线平行的性质,解题时注意平行不包括重合的情况,属于基础题。9、A【解题分析】
利用函数的图像可得,从而可求出,再利用特殊点求出,进而求出三角函数的解析式,再利用三角函数图像的变换即可求解.【题目详解】由图可知,所以,当时,,由于,解得:,所以,要得到的图像,则需要将的图像向右平移.故选:A【题目点拨】本题考查了由图像求解析式以及三角函数的图像变换,需掌握三角函数图像变换的原则,属于基础题.10、C【解题分析】
化简条件得,化简,利用基本不等式,即可求解,得到答案.【题目详解】由题意,知,可得,则,当且仅当时,即时取得等号,所以,即的最小值为,故选C.【题目点拨】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件:一正、二定、三相等是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解题分析】由对数的运算性质可得到,故答案为2.12、【解题分析】
根据均值不等式即可求出的最小值.【题目详解】因为所以,根据均值不等式可得:当且仅当,即时等号成立.【题目点拨】本题主要考查了均值不等式,属于中档题.13、【解题分析】
利用成等比数列得到,再利用余弦定理可得,而根据正弦定理和成等比数列有,从而得到所求之值.【题目详解】∵成等比数列,∴.又∵,∴.在中,由余弦定理,因,∴.由正弦定理得,因为,所以,故.故答案为.【题目点拨】在解三角形中,如果题设条件是关于边的二次形式,我们可以利用余弦定理化简该条件,如果题设条件是关于边的齐次式或是关于内角正弦的齐次式,那么我们可以利用正弦定理化简该条件,如果题设条件是边和角的混合关系式,那么我们也可把这种关系式转化为角的关系式或边的关系式.14、【解题分析】
由,结合三角函数线,即可求解,得到答案.【题目详解】如图所示,因为,所以满足的的取值范围为.【题目点拨】本题主要考查了特殊角的三角函数值,以及三角函数线的应用,着重考查了推理与运算能力,属于基础题.15、7【解题分析】
由与垂直,则数量积为0,求出对应的坐标,计算即可.【题目详解】,,,又与垂直,故,解得,解得.故答案为:7.【题目点拨】本题考查通过向量数量积求参数的值.16、【解题分析】
先通过拔高法还原三视图为一个四棱锥,再根据图像找到最长棱计算即可。【题目详解】根据拔高法还原三视图,可得斜棱长最长,所以斜棱长为。【题目点拨】此题考查简单三视图还原,关键点通过拔高法将三视图还原易求解,属于较易题目。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)S【解题分析】
(1)计算得到bn+1bn(2)根据(1)知an【题目详解】(1)因为bn+1b所以数列bn(2)因为bn=aSn【题目点拨】本题考查了等比数列的证明,分组求和,意在考查学生的计算能力和对于数列方法的灵活运用.18、(Ⅰ)见证明;(Ⅱ)【解题分析】
(Ⅰ)折叠前,AC⊥DE;,从而折叠后,DE⊥PF,DE⊥CF,由此能证明DE⊥平面PCF.再由DC∥AE,DC=AE能得到DC∥EB,DC=EB.说明四边形DEBC为平行四边形.可得CB∥DE.由此能证明平面PBC⊥平面PCF.(Ⅱ)由题意根据勾股定理运算得到,又由(Ⅰ)的结论得到,可得平面,再利用等体积转化有,计算结果.【题目详解】(Ⅰ)折叠前,因为四边形为菱形,所以;所以折叠后,,,又,平面,所以平面因为四边形为菱形,所以.又点为线段的中点,所以.所以四边形为平行四边形.所以.又平面,所以平面.因为平面,所以平面平面.(Ⅱ)图1中,由已知得,,所以图2中,,又所以,所以又平面,所以又,平面,所以平面,所以.所以三棱锥的体积为.【题目点拨】本题考查线面垂直、面面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查了三棱锥体积的求法,运用了转化思想,是中档题.19、(1)(2)【解题分析】
(1)是关于m的一次函数,计算得到答案.(2)易知,讨论和两种情况计算得到答案.【题目详解】(1)对任意实数,恒成立,即对任意实数恒成立,是关于m的一次函数,,解得或,所以实数x的取值范围是.(2)存在,使得成立,即,显然.(i)当时,要使成立,即需成立,即需成立.,(当且仅当时等号成立),,.(ii)当时,要使成立,即需成立,即需成立,,(当且仅当时等号成立),.综上得实数m的取值范围是.【题目点拨】本题考查了恒成立问题和存在性问题,意在考查学生的综合应用能力.20、(Ⅰ)(Ⅱ)【解题分析】
(I)利用向量数量积的运算,化简,得到,由此求得的大小.(II)先利用向量的数量积运算,求得的值,由此求得的值.【题目详解】解:(Ⅰ)因为,所以.所以.因为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 26958.20-2025产品几何技术规范(GPS)滤波第20部分:线性轮廓滤波器:基本概念
- GB/T 28062-2025柑橘黄龙病菌实时荧光定量PCR检测技术规程
- 2025年网络营销与传播策略能力测评试卷及答案
- 2025年数字营销策略与实施考试试题及答案
- Hydroxymycotrienin-A-生命科学试剂-MCE
- 2025年高中物理高考模拟试卷及答案
- 《地理地形地貌介绍与自然环境保护教案》
- 从诗文中找寻真我:高一语文美文赏析教学教案
- 夏日绝句赏析:五年级语文阅读理解教案
- 食品购销合同框架协议
- 《繁星春水》读后感600字8篇
- 公司治理视角下的康美药业财务舞弊案例研究
- 污水处理设备供货方案
- 急诊医学特点课件
- (大学生心理健康教育)第七章宿舍人际关系
- 2023年马克思主义原理考试知识点汇总
- 基于S71200PLC单部六层电梯控制系统设计
- 空调保养维修合同范本
- 华侨大学2013-电磁场与电磁波试卷
- 北京市消防条例培训课件
- 安全文明措施费使用计划方案
评论
0/150
提交评论