2024届江西省南昌市三校联考数学高一下期末学业水平测试模拟试题含解析_第1页
2024届江西省南昌市三校联考数学高一下期末学业水平测试模拟试题含解析_第2页
2024届江西省南昌市三校联考数学高一下期末学业水平测试模拟试题含解析_第3页
2024届江西省南昌市三校联考数学高一下期末学业水平测试模拟试题含解析_第4页
2024届江西省南昌市三校联考数学高一下期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江西省南昌市三校联考数学高一下期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列的通项公式,前项和为,则关于数列、的极限,下面判断正确的是()A.数列的极限不存在,的极限存在B.数列的极限存在,的极限不存在C.数列、的极限均存在,但极限值不相等D.数列、的极限均存在,且极限值相等2.已知是的边上的中点,若向量,,则向量等于()A. B. C. D.3.已知的三个内角所对的边为,面积为,且,则等于()A. B. C. D.4.已知,则的最小值是()A.2 B.6 C.2 D.25.不等式的解集为()A. B.C. D.6.在等比数列中,,,,则等于()A. B. C. D.7.某次运动会甲、乙两名射击运动员成绩如右图所示,甲、乙的平均数分别为为、,方差分别为,,则()A. B.C. D.8.已知随机变量服从正态分布,且,,则()A.0.2 B.0.3 C.0.7 D.0.89.已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为()A.0.35 B.0.25 C.0.20 D.0.1510.已知点到直线的距离为1,则的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.一组样本数据8,10,18,12的方差为___________.12.在各项均为正数的等比数列中,,,则___________.13.和2的等差中项的值是______.14._________.15.在平面直角坐标系中,在轴、轴正方向上的投影分别是、,则与同向的单位向量是__________.16.三棱锥P﹣ABC的底面ABC是等腰三角形,AC=BC=2,AB=2,侧面PAB是等边三角形且与底面ABC垂直,则该三棱锥的外接球表面积为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某体育老师随机调查了100名同学,询问他们最喜欢的球类运动,统计数据如表所示.已知最喜欢足球的人数等于最喜欢排球和最喜欢羽毛球的人数之和.最喜欢的球类运动足球篮球排球乒乓球羽毛球网球人数a201015b5(1)求的值;(2)将足球、篮球、排球统称为“大球”,将乒乓球、羽毛球、网球统称为“小球”.现按照喜欢大、小球的人数用分层抽样的方式从调查的同学中抽取5人,再从这5人中任选2人,求这2人中至少有一人喜欢小球的概率.18.各项均不相等的等差数列前项和为,已知,且成等比数列.(1)求数列的通项公式;(2)令,求数列的前项和.19.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物).为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与PM2.5的数据如下表:时间周一周二周三周四周五车流量×(万辆)5051545758PM2.5的浓度(微克/立方米)6070747879(1)根据上表数据,用最小二乘法求出y关于x的线性回归方程;(2)若周六同一时间段的车流量是25万辆,试根据(1)求出的线性回归方程,预测此时PM2.5的浓度为多少(保留整数)?参考公式:由最小二乘法所得回归直线的方程是:,其中,20.已知函数f(x)=2sinxcosx﹣2sin2x,其中x∈R,(1)求函数f(x)的值域及最小正周期;(2)如图,在四边形ABCD中,AD=3,BD,f(A)=0,BC⊥BD,BC=5,求△ABC的面积S△ABC.21.已知数列的前项和为,点在函数的图像上.(1)求数列的通项;(2)设数列,求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

分别考虑与的极限,然后作比较.【题目详解】因为,又,所以数列、的极限均存在,且极限值相等,故选D.【题目点拨】本题考查数列的极限的是否存在的判断以及计算,难度一般.注意求解的极限时,若是分段数列求和的形式,一定要将多段数列均考虑到.2、C【解题分析】

根据向量加法的平行四边形法则,以及平行四边形的性质可得,,解出向量.【题目详解】根据平行四边形法则以及平行四边形的性质,有.故选.【题目点拨】本题考查向量加法的平行四边形法则以及平行四边形的性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.3、C【解题分析】

利用三角形面积公式可得,结合正弦定理及三角恒等变换知识可得,从而得到角A.【题目详解】∵∴即∴∴∴,∴(舍)∴故选C【题目点拨】此题考查了正弦定理、三角形面积公式,以及三角恒等变换,熟练掌握边角的转化是解本题的关键.4、B【解题分析】试题分析:因为,故.考点:基本不等式的运用,考查学生的基本运算能力.5、B【解题分析】

把不等式左边的二次三项式因式分解后求出二次不等式对应方程的两根,结合二次函数的图象可得二次不等式的解集.【题目详解】由,得(x−1)(x+3)>0,解得x<−3或x>1.所以原不等式的解为,故选:B.【题目点拨】本题考查一元二次不等式的解法,求出二次方程的根结合二次函数的图象可得解集,属于基础题.6、C【解题分析】

直接利用等比数列公式计算得到答案.【题目详解】故选:C【题目点拨】本题考查了等比数列的计算,属于简单题.7、C【解题分析】试题分析:,;,,故选C.考点:茎叶图.【易错点晴】本题考查学生的是由茎叶图中的数据求平均数和方差,属于中档题目.由茎叶图观察数据,用茎表示成绩的整数环数,叶表示小数点后的数字,利用平均值公式及标准差公式求出两个样本的平均数和方差,一般平均数反映的是一组数据的平均水平,平均数越大,则该名运动员的平均成绩越高;方差式用来描述一组数据的波动大小的指标,方差越小,说明数据波动越小,即该名运动员的成绩越稳定.8、B【解题分析】随机变量服从正态分布,所以曲线关于对称,且,由,可知,所以,故选B.9、B【解题分析】

已知三次投篮共有20种,再得到恰有两次命中的事件的种数,然后利用古典概型的概率公式求解.【题目详解】三次投篮共有20种,恰有两次命中的事件有:191,271,932,812,393,有5种∴该运动员三次投篮恰有两次命中的概率为故选:B【题目点拨】本题主要考古典概型的概率求法,还考查了运算求解的能力,属于基础题.10、D【解题分析】

根据点到直线的距离公式列式求解参数即可.【题目详解】由题,,因为,故.故选:D【题目点拨】本题主要考查了点到线的距离公式求参数的问题,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、14【解题分析】

直接利用平均数和方差的公式,即可得到本题答案.【题目详解】平均数,方差.故答案为:14【题目点拨】本题主要考查平均数公式与方差公式的应用.12、8【解题分析】

根据题中数列,结合等比数列的性质,得到,即可得出结果.【题目详解】因为数列为各项均为正数的等比数列,,,所以.故答案为【题目点拨】本题主要考查等比数列的性质的应用,熟记等比数列的性质即可,属于基础题型.13、【解题分析】

根据等差中项性质求解即可【题目详解】设等差中项为,则,解得故答案为:【题目点拨】本题考查等差中项的求解,属于基础题14、【解题分析】

根据诱导公式和特殊角的三角函数值可计算出结果.【题目详解】由题意可得,原式.故答案为.【题目点拨】本题考查诱导公式和特殊三角函数值的计算,考查计算能力,属于基础题.15、【解题分析】

根据题意得出,再利用单位向量的定义即可求解.【题目详解】由在轴、轴正方向上的投影分别是、,可得,所以与同向的单位向量为,故答案为:【题目点拨】本题考查了向量的坐标表示以及单位向量的定义,属于基础题.16、【解题分析】

求出的外接圆半径,的外接圆半径,求出外接球的半径,即可求出该三棱锥的外接球的表面积.【题目详解】由题意,设的外心为,的外心为,则的外接圆半径,在中,因为,由余弦定理可得,所以,所以的外接圆半径,在等边中,由,所以,所以,设球心为,球的半径为,则,又由面,面,则,所以该三棱锥的外接球的表面积为.故答案为:.【题目点拨】本题主要考查了三棱锥的外接球的表面积的求解,其中解答中熟练应用空间几何体的结构特征,确定球的半径是解答的关键,着重考查了空间想象能力,以及推理与运算能力,属于中档试题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】

(1)根据最喜欢足球的人数等于最喜欢排球和最喜欢羽毛球的人数之和,以及总人数列方程组求解;(2)利用分层抽样,抽取的5人中,3人喜欢大球,2人喜欢小球,根据古典概型求解概率.【题目详解】(1)由题最喜欢足球的人数等于最喜欢排球和最喜欢羽毛球的人数之和,所以,解得:,所以;(2)由题可得:喜欢大球的60人,喜欢小球的40人,按照分层抽样抽取5人,其中喜欢大球的3人记为,喜欢小球的2人记为,从中任取2人,情况为:共10种,这两人中,至少一人喜欢小球的情况:共7种,所以所求概率为;【题目点拨】此题考查统计与概率相关知识,涉及分层抽样和求古典概型,关键在于弄清基本事件总数和某一事件包含的基本事件个数.18、(1);(2)【解题分析】

(1)利用等差数列的通项公式和等比数列的性质,可得,则可得通项公式.(2)根据(1)的结论可得,然后利用裂项相消求和,可得结果.【题目详解】(1)因为各项均不相等,所以公差由等差数列通项公式且,所以,又成等比数列,所以,则,化简得,所以即可得即(2)由(1)可得化简可得由所以【题目点拨】本题主要考查利用裂项相消法求和,属基础题.19、(1);(2)37【解题分析】

(1)根据题中所给公式分别求出相关数据即可得解;(2)将代入(1)所得直线方程即可得解.【题目详解】(1),故y关于x的线性回归方程是:(2)当时,所以可以预测此时PM2.5的浓度约为37.【题目点拨】此题考查根据已知数据求回归直线的方程,根据公式直接求解,利用所得回归直线方程进行预测.20、(1)值域为[﹣3,1],最小正周期为π;(2).【解题分析】

(1)化简f(x)=2sinxcosx﹣2sin2xsin2x﹣22sin(2x)﹣1,即可.(2)求得AAB,cos,可得△ABC的面积S△ABC.【题目详解】(1)f(x)=2sinxcosx﹣2sin2xsin2x﹣22sin(2x)﹣1,函数f(x)的值域为[﹣3,1]最小正周期为π;(2)∵f(A)=0,即sin(2A),∴A.在△ADB中,BD2=AD2+AB2﹣2AD•ABcosA⇒,解得ABcos,则sin∠ABC=cos

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论