版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省泰安市长城中学数学高一下期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,下列结论不正确的是(
)A.函数的最小正周期为B.函数在区间内单调递减C.函数的图象关于轴对称D.把函数的图象向左平移个单位长度可得到的图象2.已知函数,则不等式的解集是()A. B. C. D.3.已知向量,且,则的值是()A. B. C.3 D.4.已知向量是单位向量,=(3,4),且在方向上的投影为,則A.36 B.21 C.9 D.65.在中,,,分别为角,,的对边,若的面为,且,则()A.1 B. C. D.6.两圆和的位置关系是()A.相离 B.相交 C.内切 D.外切7.已知,,若对任意的,恒成立,则角的取值范围是A.B.C.D.8.已知等比数列的前项和为,若,,则数列的公比()A. B. C.或 D.以上都不对9.已知,,点在内,且,设,则等于()A. B.3 C. D.10.已知过点的直线的倾斜角为,则直线的方程为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小正周期是______.12.已知为所在平面内一点,且,则_____13.过抛物线的焦点F的直线交抛物线于A、B两点,则________.14.若,,,则M与N的大小关系为___________.15.已知等差数列的前项和为,若,则_____16.设是等差数列的前项和,若,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知四棱锥中,平面,,,,是线段的中点.(1)求证:平面;(2)试在线段上确定一点,使得平面,并加以证明.18.如图,在中,点在边上,,,.(1)求边的长;(2)若的面积是,求的值.19.设O为坐标原点,动点M在椭圆C上,过M作x轴的垂线,垂足为N,点P满足.(1)求点P的轨迹方程;(2)设点在直线上,且.证明:过点P且垂直于OQ的直线过C的左焦点F.20.已知直线l经过点.(1)若直线在两坐标轴上的截距相等,求直线的方程;(2)若,两点到直线的距离相等,求直线的方程.21.已知函数.(1)求函数的最小正周期;(2)求函数的最小值及相应的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
利用余弦函数的性质对A、B、C三个选项逐一判断,再利用平移“左加右减”及诱导公式得出,进而得出答案.【题目详解】由题意,函数其最小正周期为,故选项A正确;函数在上为减函数,故选项B正确;函数为偶函数,关于轴对称,故选项C正确把函数的图象向左平移个单位长度可得,所以选项D不正确.故答案为D【题目点拨】本题主要考查了余弦函数的性质,以及诱导公式的应用,着重考查了推理与运算能力,属于基础题.2、A【解题分析】
分别考虑即时;即时,原不等式的解集,最后求出并集。【题目详解】当即时,,则等价于,即,解得:,当即时,,则等价于,即,所以,综述所述,原不等式的解集为故答案选A【题目点拨】本题考查分段函数的应用,一元二次不等式的解集,属于基础题。3、A【解题分析】
由已知求得,然后展开两角差的正切求解.【题目详解】解:由,且,得,即.,故选A.【题目点拨】本题考查数量积的坐标运算,考查两角差的正切,是基础题.4、D【解题分析】
根据公式把模转化为数量积,展开后再根据和已知条件计算.【题目详解】因为在方向上的投影为,所以,.故选D.【题目点拨】本题主要考查向量模有关的计算,常用公式有,.5、D【解题分析】
根据三角形的面积公式以及余弦定理进行化简求出的值,然后利用两角和差的正弦公式进行求解即可.【题目详解】解:由,得,∵,∴,即即,则,∵,∴,∴,即,则,故选D.【题目点拨】本题主要考查解三角形的应用,结合三角形的面积公式以及余弦定理求出的值以及利用两角和差的正弦公式进行计算是解决本题的关键.6、B【解题分析】
由圆的方程可得两圆圆心坐标和半径;根据圆心距和半径之间的关系,即可判断出两圆的位置关系.【题目详解】由圆的方程可知,两圆圆心分别为:和;半径分别为:,则圆心距:两圆位置关系为:相交本题正确选项:【题目点拨】本题考查圆与圆位置关系的判定;关键是明确两圆位置关系的判定是根据圆心距与两圆半径之间的长度关系确定.7、B【解题分析】
由向量的数量积得,对任任意的,恒成立,转化成关于的一次函数,保证在和的函数值同时小于0即可.【题目详解】,因为对任意的恒成立,则,,解得:,故选B.【题目点拨】本题考查向量数量积的坐标运算、三角恒等变换及不等式恒成立问题,求解的关键是变换主元的思想,即把不等式看成是关于变量的一次函数,问题则变得简单.8、C【解题分析】
根据和可得,解得结果即可.【题目详解】由得,所以,所以,所以,解得或故选:C.【题目点拨】本题考查了等比数列的通项公式的基本量的运算,属于基础题.9、B【解题分析】
先根据,可得,又因为,,所以可得:在轴方向上的分量为,在轴方向上的分量为,又根据,可得答案.【题目详解】,,
,,
在轴方向上的分量为,
在轴方向上的分量为,
,
,,
两式相比可得:.故选B.【题目点拨】.向量的坐标运算主要是利用加、减、数乘运算法则进行的.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及运算法则的正确使用.10、B【解题分析】
由直线的倾斜角求得直线的斜率,再由直线的点斜式方程求解.【题目详解】∵直线的倾斜角为,∵直线的斜率,又直线过点,由直线方程的点斜式可得直线的方程为,即.故选:B.【题目点拨】本题考查直线的点斜式方程,考查直线的倾斜角与斜率的关系,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
由二倍角的余弦函数公式化简解析式可得,根据三角函数的周期性及其求法即可得解.【题目详解】.由周期公式可得:.故答案为【题目点拨】本题主要考查了二倍角的余弦函数公式的应用,考查了三角函数的周期性及其求法,属于基本知识的考查.12、【解题分析】
将向量进行等量代换,然后做出对应图形,利用平面向量基本定理进行表示即可.【题目详解】解:设,则根据题意可得,,如图所示,作,垂足分别为,则又,,故答案为.【题目点拨】本题考查了平面向量基本定理及其意义,两个向量的加减法及其几何意义,属于中档题.13、【解题分析】
讨论斜率不存在和斜率存在两种情况,分别计算得到答案.【题目详解】抛物线的焦点F为,当斜率不存在时,易知,故;当斜率存在时,设,故,即,故,.综上所述:.故答案为:.【题目点拨】本题考查了抛物线中线段长度问题,意在考查学生的计算能力和转化能力.14、【解题分析】
根据自变量的取值范围,利用作差法即可比较大小.【题目详解】,,,所以当时,所以,即,故答案为:.【题目点拨】本题考查了作差法比较整式的大小,属于基础题.15、1.【解题分析】
利用等差数列前项和公式能求出的值.【题目详解】解:∵等差数列的前项和为,若,
.
故答案为:.【题目点拨】本题考查等差数列前项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.16、1.【解题分析】
由已知结合等差数列的性质求得,代入等差数列的前项和得答案.【题目详解】解:在等差数列中,由,得,,则,故答案为:1.【题目点拨】本题主要考查等差数列的通项公式,考查等差数列的性质,考查了等差数列前项和的求法,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)存在线段上的中点,使平面,详见解析【解题分析】
(1)利用条件判断CM与PA、AB垂直,由直线与平面垂直的判定定理可证.(2)取PB的中点Q,PA的中点F,判断四边形CQFD为平行四边形,利用直线与平面平行的判定定理可证;或取PB中点Q,证明平面CQM与平面DAP平行,再利用两平面平行的性质可证.【题目详解】解:(1)∵,∴是等边三角形,∴,又∵平面,平面,∴,又∵,∴平面;(2)取线段的中点,线段的中点,连结,∴,∵是线段的中点,,∴,∴是平行四边形,∴,又∵平面,平面,∴平面,即存在线段上的中点,使平面.【题目点拨】本题考查空间直线与平面的平行、垂直判定与性质,考查空间想象能力,逻辑推理能力,属于中档题.18、(1)2;(2)【解题分析】
(1)设,利用余弦定理列方程可得:,解方程即可(2)利用(1)中结果即可判断为等边三角形,即可求得中边上的高为,再利用的面积是即可求得:,结合余弦定理可得:,再利用正弦定理可得:,问题得解【题目详解】(1)在中,设,则,由余弦定理得:即:解之得:,即边的长为2.(2)由(1)得为等边三角形,作于,则∴,故在中,由余弦定理得:∴在中,由正弦定理得:,即:∴∴【题目点拨】本题主要考查了利用正、余弦定理解三角形,还考查了三角形面积公式的应用及计算能力,属于中档题19、(1);(2)见解析.【解题分析】
试题分析:(1)转移法求轨迹:设所求动点坐标及相应已知动点坐标,利用条件列两种坐标关系,最后代入已知动点轨迹方程,化简可得所求轨迹方程;(2)证明直线过定点问题,一般方法是以算代证:即证,先设P(m,n),则需证,即根据条件可得,而,代入即得.试题解析:解:(1)设P(x,y),M(),则N(),由得.因为M()在C上,所以.因此点P的轨迹为.由题意知F(-1,0),设Q(-3,t),P(m,n),则,.由得-3m-+tn-=1,又由(1)知,故3+3m-tn=0.所以,即.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒成立的.定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.20、(2)或(2)或【解题分析】
(2)讨论直线是否过原点,利用截距相等进行求解即可.(2)根据点到直线的距离相等,分直线平行和直线过A,B的中点两种情况进行求解即可.【题目详解】(2)若直线过原点,则设为y=kx,则k=2,此时直线方程为y=2x,当直线不过原点,设方程为2,即x+y=a,此时a=2+2=2,则方程为x+y=2,综上直线方程为y=2x或x+y=2.(2)若A,B两点在直线l同侧,则AB∥l,AB的斜率k2,即l的斜率为2,则l的方程为y﹣2=x﹣2,即y=x+2,若A,B两点在直线的两侧,即l过A,B的中点C(2,0),则k2,则l的方程为y﹣0=﹣2(x﹣2),即y=﹣2x+4,综上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专业售后售后服务
- 社区党员先锋行动计划保证书
- 企业间借款合同范本格式设计
- 专业代理记账服务合同
- 学业成绩承诺函保证承诺
- 致爱人的道歉信请求女友原谅
- 点工协议书格式
- 专业企业保证书范文
- 数据备份与恢复合同
- 爆破作业合同范本模板
- 大众顶级 辉腾 减振控制的空气悬架_图文
- 血液透析专科操作流程及评分标准
- 电工新技术介绍(课堂PPT)
- 座板式单人吊具(课堂PPT)
- 托班一日生活情况反馈表
- 机电设备维护保养技术
- FLAC3D常用命令
- JGJ_T231-2021建筑施工承插型盘扣式钢管脚手架安全技术标准(高清-最新版)
- 毕业论文(设计)除雪车工作装置设计
- 镜片加工知识之四研磨
- 核电站1E级电气设备鉴定标准技术经验
评论
0/150
提交评论