版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省绵阳市绵阳南山中学2024届高一数学第二学期期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图所示,4个散点图中,不适合用线性回归模型拟合其中两个变量的是()A. B.C. D.2.若则一定有()A. B. C. D.3.记复数的虚部为,已知满足,则为()A. B. C.2 D.4.在空间直角坐标系中,点关于平面对称的点的坐标为()A. B. C. D.5.在四边形中,,且·=0,则四边形是()A.菱形 B.矩形 C.直角梯形 D.等腰梯形6.“”是“直线(m+1)x+3my+2=0与直线(m-2)x+(m+1)y-1=0相互垂直”的()A.充分必要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件7.在中,角所对的边分别为,若的面积,则()A. B. C. D.8.若实数,满足约束条件,则的最大值为()A.-3 B.1 C.9 D.109.公差不为零的等差数列{an}的前n项和为Sn,若a3是a2与a6的等比中项,S3=3,则S8=()A.36 B.42 C.48 D.6010.已知是的共轭复数,若复数,则在复平面内对应的点是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列是公差不为0的等差数列,,且成等比数列,则的前9项和_______.12.如图所示,已知点,单位圆上半部分上的点满足,则向量的坐标为________.13.函数,的图象与直线y=k有且仅有两个不同的交点,则k的取值范围是_____.14.用数学归纳法证明时,从“到”,左边需增乘的代数式是___________.15.若,且,则=_______.16.三棱锥中,分别为的中点,记三棱锥的体积为,的体积为,则____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某企业生产,两种产品,根据市场调查与预测,产品的利润与投资成正比,其关系如图1,产品的利润与投资的算术平方根成正比,其关系如图2,(注:利润与投资单位:万元)(1)分别将,两种产品的利润表示为投资的函数关系,并写出它们的函数关系式;(2)该企业已筹集到10万元资金,全部投入到,两种产品的生产,怎样分配资金,才能使企业获得最大利润,其最大利润约为多少万元(精确到1万元).18.已知,,分别为内角,,的对边,且.(1)求角;(2)若,,求边上的高.19.已知正方形的中心为,一条边所在直线的方程是.(1)求该正方形中与直线平行的另一边所在直线的方程;(2)求该正方形中与直线垂直的一边所在直线的方程.20.如图,四棱柱的底面是菱形,平面,,,,点为的中点.(1)求证:直线平面;(2)求证:平面;(3)求直线与平面所成的角的正切值.21.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如表所示:零件的个数个2345加工的时间2.5344.51求出y关于x的线性回归方程;2试预测加工10个零件需要多少时间?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
根据线性回归模型建立方法,分析选项,找出散点比较分散且无任何规律的选项可得答案.【题目详解】根据题意,适合用线性回归拟合其中两个变量的散点图必须散点分布比较集中,且大体接近某一条直线,分析选项可得A选项的散点图杂乱无章,最不符合条件.故选A【题目点拨】本题考查了统计案例散点图,属于基础题.2、D【解题分析】本题主要考查不等关系.已知,所以,所以,故.故选3、A【解题分析】
根据复数除法运算求得,从而可得虚部.【题目详解】由得:本题正确选项:【题目点拨】本题考查复数虚部的求解问题,关键是通过复数除法运算得到的形式.4、C【解题分析】
纵竖坐标不变,横坐标变为相反数.【题目详解】点关于平面对称的点的坐标为.故选C.【题目点拨】本题考查空间直角坐标系,属于基础题.5、A【解题分析】
由可得四边形为平行四边形,由·=0得四边形的对角线垂直,故可得四边形为菱形.【题目详解】∵,∴与平行且相等,∴四边形为平行四边形.又,∴,即平行四边形的对角线互相垂直,∴平行四边形为菱形.故选A.【题目点拨】本题考查向量相等和向量数量积的的应用,解题的关键是正确理解有关的概念,属于基础题.6、B【解题分析】试题分析:当时,直线为和直线,斜率之积等于,所以垂直;当两直线垂直时,,解得:或,根据充分条件必要条件概念知,“”是“直线(m+1)x+3my+2=0与直线(m-2)x+(m+1)y-1=0相互垂直”的充分不必要条件,故选B.考点:1、充分条件、必要条件;2、两条直线垂直的关系.7、B【解题分析】
利用面积公式及可求,再利用同角的三角函数的基本关系式可求,最后利用余弦定理可求的值.【题目详解】因为,故,所以,因为,故,又,由余弦定理可得,故.故选B.【题目点拨】三角形中共有七个几何量(三边三角以及外接圆的半径),一般地,知道其中的三个量(除三个角外),可以求得其余的四个量.(1)如果知道三边或两边及其夹角,用余弦定理;(2)如果知道两边即一边所对的角,用正弦定理(也可以用余弦定理求第三条边);(3)如果知道两角及一边,用正弦定理.8、C【解题分析】
画出可行域,向上平移基准直线到可行域边界的位置,由此求得目标函数的最大值.【题目详解】画出可行域如下图所示,由图可知,向上平移基准直线到的位置,此时目标函数取得最大值为.故选C.【题目点拨】本小题主要考查利用线性规划的知识求目标函数的最大值,考查数形结合的数学思想方法,属于基础题.9、C【解题分析】
设出等差数列的公差d,根据a3是a2与a6的等比中项,S3=3,利用等比数列的性质和等差数列的前n项和的公式化简得到关于等差数列首项和公差方程组,求出方程组的解集即可得到首项和公差,然后再利用等差数列的前n项和的公式求出S8即可【题目详解】设公差为d(d≠0),则有,化简得:,因为d≠0,解得a1=-1,d=2,则S8=-82=1.故选:C.【点评】此题考查运用等差数列的前n项和的公式及等比数列的通项公式化简求值,意在考查公式运用,是基础题.10、A【解题分析】由,得,所以在复平面内对应的点为,故选A.二、填空题:本大题共6小题,每小题5分,共30分。11、117【解题分析】
由成等比数列求出公差,由前项公式求和.【题目详解】设数列是公差为,则,由成等比数列得,解得,∴.故答案为:117.【题目点拨】本题考查等差数列的前项和公式,考查等比数列的性质.解题关键是求出数列的公差.12、【解题分析】
设点,由和列方程组解出、的值,可得出向量的坐标.【题目详解】设点的坐标为,则,由,得,解得,因此,,故答案为.【题目点拨】本题考查向量的坐标运算,解题时要将一些条件转化为与向量坐标相关的等式,利用方程思想进行求解,考查运算求解能力,属于中等题.13、【解题分析】
作出其图像,可只有两个交点时k的范围为.故答案为14、.【解题分析】
从到时左边需增乘的代数式是,化简即可得出.【题目详解】假设时命题成立,则,当时,从到时左边需增乘的代数式是.故答案为:.【题目点拨】本题考查数学归纳法的应用,考查推理能力与计算能力,属于中档题.15、【解题分析】
由的值及,可得的值,计算可得的值.【题目详解】解:由,且,由,可得,故,故答案为:.【题目点拨】本题主要考查了同角三角函数的基本关系,熟练掌握其基本关系是解题的关键.16、【解题分析】
由已知设点到平面距离为,则点到平面距离为,所以,考点:几何体的体积.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)为,为;(2)产品投入3.75万元,产品投入6.25万元,最大利润为4万元【解题分析】
(1)根据题意给出的函数模型,设;代入图中数据求得既得,注意自变量;(2)设产品投入万元,则产品投入万元,设企业利润为万元.,列出利润函数为,用换元法,设,变化为二次函数可求得利润的最大值.【题目详解】解:(1)设投资为万元,产品的利润为万元,产品的利润为万元由题设知;由图1知,由图2知,则,.(2)设产品投入万元,则产品投入万元,设企业利润为万元.,,令,则则当时,,此时所以当产品投入3.75万元,产品投入6.25万元,企业获得最大利润为4万元.【题目点拨】本题考查函数的应用,在已知函数模型时直接设出函数表达式,代入已知条件可得函数解析式.18、(1);(2)【解题分析】
(1)利用正弦定理化简已知条件,利用三角形内角和定理以及两角和的正弦公式化简,由此求得,进而求得的大小.(2)利用正弦定理求得,进而求得的大小,由此求得的值,根据求得边上的高.【题目详解】解:(1)∵∴∴∴∴即:,∴(2)由正弦定理:,∴∵∴∴∴设边上的高为,则有【题目点拨】本小题主要考查利用正弦定理进行边角互化,考查利用正弦定理解三角形,考查三角恒等变换,考查特殊角的三角函数值,属于中档题.19、(1);(2)或.【解题分析】
(1)由直线平行则斜率相等,设出所求直线方程,利用M点到两直线距离相等求解;(2)由直线垂直则斜率乘积为-1,设出所求直线,利用M点到两直线距离相等求解.【题目详解】(1)设与直线平行的另一边所在直线方程为,则,解得,或(舍).所以与直线平行的正方形的另一边所在直线的方程为.(2)设与直线垂直的正方形的边所在直线方程为,则,解得,或.所以与直线垂直的正方形的边所在的直线方程为或.【题目点拨】本题考查直线平行或垂直与斜率的关系,以及点到直线的距离公式,属直线方程求解基础题.20、(1)见解析;(2)见解析;(3)【解题分析】
(1)只需证明PO∥BD1,即可得BD1∥平面PAC;(2)只需证明AC⊥BD.DD1⊥AC.即可证明AC⊥平面BDD1B1(3)∠CPO就是直线CP与平面BDD1B1所成的角,在Rt△CPO中,tan∠CPO即可求解【题目详解】(1)设和交于点,连结,由于,分别是,的中点,故,∵平面,平面所以直线平面.(2)在四棱柱中,底面是菱形,则又平面,且平面,则,∵平面,平面,∴平面.(3)由(2)知平面.∴在平面内的射影为∴是与平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年大型机械设备租赁合同(短期)
- 2024年工程承包方与分包方劳务合作合同范本
- 2024年居间合同:佣金支付与权益保障
- 2024年城乡务工人员合同范本
- 上旅游合同范本电子版
- 2024年 edition 跨境电商平台搭建合同
- 2024年城乡医疗联合体服务合同
- 2024-2030年中国婴幼儿纸尿裤行业市场发展趋势及竞争策略分析报告版
- 2024-2030年中国复合浆涂料项目可行性研究报告
- 《商铺租赁合同》法律条文
- 监控维修施工方案
- 是谁杀死了周日
- 2024年辽宁铁道职业技术学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 主播艺人入职面试信息登记表
- 2023年学习兴税(网络信息)知识考试复习题库(含答案)
- 艺术设计专业人才需求报告
- 社区工作者经典备考题库(必背300题)
- 图形创意(第二版)教材课件汇总完整版ppt全套课件最全教学教程整本书电子教案全书教案合集最新课件汇编
- 混凝土早强剂检验报告(出厂)
- 物流系统课件(PPT 52页).ppt
- 风力发电机组灭火系统培训ppt课件.ppt
评论
0/150
提交评论