德阳市重点中学2024届数学高一第二学期期末联考模拟试题含解析_第1页
德阳市重点中学2024届数学高一第二学期期末联考模拟试题含解析_第2页
德阳市重点中学2024届数学高一第二学期期末联考模拟试题含解析_第3页
德阳市重点中学2024届数学高一第二学期期末联考模拟试题含解析_第4页
德阳市重点中学2024届数学高一第二学期期末联考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

德阳市重点中学2024届数学高一第二学期期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.对数列,若区间满足下列条件:①;②,则称为区间套.下列选项中,可以构成区间套的数列是()A.;B.C.D.2.设,则下列结论正确的是()A. B. C. D.3.在中,,则是()A.等腰直角三角形 B.等腰或直角三角形 C.等腰三角形 D.直角三角形4.已知数列{an}满足a1=2A.2 B.-3 C.-125.已知函数()的最小正周期为,则该函数的图象()A.关于直线对称 B.关于直线对称C.关于点对称 D.关于点对称6.下列大小关系正确的是()A.B.C.D.7.在天气预报中,有“降水概率预报”,例如预报“明天降水的概率为”,这是指()A.明天该地区有的地方降水,有的地方不降水B.明天该地区有的时间降水,其他时间不降水C.明天该地区降水的可能性为D.气象台的专家中有的人认为会降水,另外有的专家认为不降水8.直线mx+4y-2=0与直线2x-5y+n=0垂直,垂足为(1,p),则n的值为()A.-12 B.-14 C.10 D.89.设满足约束条件,则的最大值为()A.7 B.6 C.5 D.310.长方体中的8个顶点都在同一球面上,,,,则该球的表面积为().A. B. C.50 D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数在区间上的值域为______.12.据监测,在海滨某城市附近的海面有一台风,台风中心位于城市的南偏东30°方向,距离城市的海面处,并以的速度向北偏西60°方向移动(如图示).如果台风侵袭范围为圆形区域,半径,台风移动的方向与速度不变,那么该城市受台风侵袭的时长为_______小时.13.,则f(f(2))的值为____________.14.设,若用含的形式表示,则________.15.在平面直角坐标系中,为原点,,动点满足,则的最大值是.16.已知一扇形的半径为,弧长为,则该扇形的圆心角大小为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)若,且对任意的,恒成立,求实数的取值范围;(2)求,解关于的不等式.18.如图,在四棱柱中,侧棱底面,,,,,且点和分别为和的中点.(1)求证:平面;(2)求二面角的正弦值;(3)设为棱上的点,若直线和平面所成角的正弦值为,求线段的长.19.在中,角A,B,C所对的边分别为a,b,c,.(1)求角B;(2)若,求周长的取值范围.20.已知圆以原点为圆心且与直线相切.(1)求圆的方程;(2)若直线与圆交于、两点,过、两点分别作直线的垂线交轴于、两点,求线段的长.21.在平面直角坐标系中,已知.(1)求的值;(2)若,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】由题意,得为递增数列,为递减数列,且当时,;而与与均为递减数列,所以排除A,B,D,故选C.考点:新定义题目.2、B【解题分析】

利用不等式的性质,即可求解,得到答案.【题目详解】由题意知,根据不等式的性质,两边同乘,可得成立.故选:B.【题目点拨】本题主要考查了不等式的性质及其应用,其中解答中熟记不等式的基本性质是解答的关键,着重考查了推理与运算能力,属于基础题.3、D【解题分析】

先由可得,然后利用与三角函数的和差公式可推出,从而得到是直角三角形【题目详解】因为,所以所以因为所以即所以所以因为,所以因为,所以,即是直角三角形故选:D【题目点拨】要判断三角形的形状,应围绕三角形的边角关系进行思考,主要有以下两条途径:①角化边:把已知条件转化为只含边的关系,通过因式分解、配方等得到边的对应关系,从而判断三角形形状,②边化角:把已知条件转化为内角的三角函数间的关系,通过三角恒等变换,得出内角的关系,从而判断三角形的形状.4、D【解题分析】

先通过列举找到数列的周期,再利用数列的周期求值.【题目详解】由题得a2所以数列的周期为4,所以a2020故选:D【题目点拨】本题主要考查递推数列和数列的周期,意在考查学生对这些知识的理解掌握水平,属于基础题.5、D【解题分析】∵函数()的最小正周期为,∴,,令,,,,显然A,B错误;令,可得:,,显然时,D正确故选D6、C【解题分析】试题分析:因为,,,所以。故选C。考点:不等式的性质点评:对于指数函数和对数函数,若,则函数都为增函数;若,则函数都为减函数。7、C【解题分析】

预报“明天降水的概率为”,属于随机事件,可能下雨,也可能不下雨,即可得到答案.【题目详解】由题意,天气预报中,有“降水概率预报”,例如预报“明天降水的概率为”,这是指明天下雨的可能性是,故选C.【题目点拨】本题主要考查了随机事件的概念及其概率,其中正确理解随机事件的概率的概念是解答此类问题的关键,着重考查了分析问题和解答问题的能力,属于基础题.8、A【解题分析】

由直线mx+4y﹣2=0与直线2x﹣5y+n=0垂直,求出m=10,把(1,p)代入10x+4y﹣2=0,求出p=﹣2,把(1,﹣2)代入2x﹣5y+n=0,能求出n.【题目详解】∵直线mx+4y﹣2=0与直线2x﹣5y+n=0垂直,垂足为(1,p),∴2m﹣4×5=0,解得m=10,把(1,p)代入10x+4y﹣2=0,得10+4p﹣2=0,解得p=﹣2,把(1,﹣2)代入2x﹣5y+n=0,得2+10+n=0,解得n=﹣1.故答案为:A【题目点拨】本题考查实数值的求法,考查直线与直线垂直的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.9、A【解题分析】

考点:简单线性规划.专题:计算题.分析:首先作出可行域,再作出直线l0:y=-3x,将l0平移与可行域有公共点,直线y=-3x+z在y轴上的截距最大时,z有最大值,求出此时直线y=-3x+z经过的可行域内的点A的坐标,代入z=3x+y中即可.解:如图,作出可行域,作出直线l0:y=-3x,将l0平移至过点A(3,-2)处时,函数z=3x+y有最大值1.故选A.点评:本题考查线性规划问题,考查数形结合思想.解答的步骤是有两种方法:一种是:画出可行域画法,标明函数几何意义,得出最优解.另一种方法是:由约束条件画出可行域,求出可行域各个角点的坐标,将坐标逐一代入目标函数,验证,求出最优解.10、C【解题分析】

根据长方体的外接球性质及球的表面积公式,化简即可得解.【题目详解】根据长方体的外接球直径为体对角线长,则,所以,则由球的表面积公式可得,故选:C.【题目点拨】本题考查了长方体外接球的性质及球表面积公式应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

由二倍角公式降幂,再由两角和的正弦公式化函数为一个角的一个三角函数形式,结合正弦函数性质可求得值域.【题目详解】,,则,.故答案为:.【题目点拨】本题考查三角恒等变换(二倍角公式、两角和的正弦公式),考查正弦函数的的单调性和最值.求解三角函数的性质的性质一般都需要用三角恒等变换化函数为一个角的一个三角函数形式,然后结合正弦函数的性质得出结论.12、1【解题分析】

设台风移动M处的时间为th,则|PM|=20t,利用余弦定理求得AM,而该城市受台风侵袭等价于AM≤60,解此不等式可得.【题目详解】如图:设台风移动M处的时间为th,则|PM|=20t,依题意可得,在三角形APM中,由余弦定理可得:依题意该城市受台风侵袭等价于AM≤60,即AM2≤602,化简得:,所以该城市受台风侵袭的时间为6﹣1=1小时.故答案为:1.【题目点拨】本题考查了余弦定理的应用,考查了数学运算能力.13、1【解题分析】

先求f(1),再根据f(1)值所在区间求f(f(1)).【题目详解】由题意,f(1)=log3(11–1)=1,故f(f(1))=f(1)=1×e1–1=1,故答案为:1.【题目点拨】本题考查分段函数求值,考查对应性以及基本求解能力.14、【解题分析】

两边取以5为底的对数,可得,化简可得,根据对数运算即可求出结果.【题目详解】因为所以两边取以5为底的对数,可得,即,所以,,故填.【题目点拨】本题主要考查了对数的运算法则,属于中档题.15、【解题分析】

试题分析:设,表示以为圆心,r=1为半径的圆,而,所以,,,故得最大值为考点:1.圆的标准方程;2.向量模的运算16、【解题分析】

利用扇形的弧长除以半径可得出该扇形圆心角的弧度数.【题目详解】由扇形的弧长、半径以及圆心角之间的关系可知,该扇形的圆心角大小为.故答案为:.【题目点拨】本题考查扇形圆心角的计算,解题时要熟悉扇形的弧长、半径以及圆心角之间的关系,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解题分析】

(1)由题意,若,则函数关于对称,根据二次函数对称性,可求,代入化简得在上恒成立,由,知当为最小值,根据恒成立思想,令最小值,即可求解;(2)根据题意,由,化简一元二次不等式为,讨论参数范围,写出解集即可.【题目详解】解:(1)若,所以函数对称轴,.,即在恒成立,即在上恒成立所以,又,故(2),所以;原不等式变为,因为,所以.所以当,即时,解为;当时,解集为;当,即时,解为综上,当时,不等式的解集为;当时,不等式的解集为必;当时,不等式的解隼为【题目点拨】本题考查(1)函数恒成立问题;(2)含参一元二次不等式的解法;考查计算能力,考查分类讨论思想,属于中等题型.18、(1)证明见解析;(2);(3)【解题分析】

如图,以为原点建立空间直角坐标系,依题意可得,又因为分别为和的中点,得.(Ⅰ)证明:依题意,可得为平面的一个法向量,,由此可得,,又因为直线平面,所以平面(Ⅱ),设为平面的法向量,则,即,不妨设,可得,设为平面的一个法向量,则,又,得,不妨设,可得因此有,于是,所以二面角的正弦值为.(Ⅲ)依题意,可设,其中,则,从而,又为平面的一个法向量,由已知得,整理得,又因为,解得,所以线段的长为.考点:直线和平面平行和垂直的判定与性质,二面角、直线与平面所成的角,空间向量的应用.19、(1);(2)【解题分析】

(1)根据辅助角公式和的范围,得到的值;(2)利用余弦定理和基本不等式,得到的范围,结合三角形三边关系,从而得到周长的取值范围.【题目详解】(1)因为,所以,即,因为,所以,所以,所以;(2)在中,由余弦定理得由基本不等式可知,又,所以解得,根据三角形三边关系得,即,故所以周长的范围为.【题目点拨】本题考查辅助角公式,余弦定理解三角形,基本不等式求最值,三角形三边关系,属于中档题.20、(1);(2).【解题分析】

(1)计算原点到直线的距离,作为圆的半径,从而可得出圆的方程;(2)计算出圆心到直线的距离,利用勾股定理可计算出,过点作,垂足为,求出直线的倾斜角为,再利用锐角三角函数的定义可求出.【题目详解】(1)把直线化为一般式,即,到直线的距离为,圆的半径为,圆的方程为;(2)直线的一般方程为,点到直线的距离为,圆的半径为,则,过点作,垂足为,.又的倾斜角为,,.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论