2024届浙江省杭州市高级中学高一数学第二学期期末达标检测试题含解析_第1页
2024届浙江省杭州市高级中学高一数学第二学期期末达标检测试题含解析_第2页
2024届浙江省杭州市高级中学高一数学第二学期期末达标检测试题含解析_第3页
2024届浙江省杭州市高级中学高一数学第二学期期末达标检测试题含解析_第4页
2024届浙江省杭州市高级中学高一数学第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省杭州市高级中学高一数学第二学期期末达标检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.菱形ABCD,E是AB边靠近A的一个三等分点,DE=4,则菱形ABCD面积最大值为()A.36 B.18 C.12 D.92.已知向量,满足且,若向量在向量方向上的投影为,则()A. B. C. D.3.不等式组所表示的平面区域的面积为()A.1 B. C. D.4.某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一个容量为20的样本,则抽取管理人员()A.3人 B.4人 C.7人 D.12人5.两条直线和,,在同一直角坐标系中的图象可能是()A. B.C. D.6.如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别是()A.12.5;12.5 B.13;13 C.13;12.5 D.12.5;137.已知是所在平面内一点,且满足,则为A.等腰三角形 B.直角三角形 C.等边三角形 D.等腰直角三角形8.为了得到函数,(x∈R)的图象,只需将(x∈R)的图象上所有的点().A.向右平移个单位 B.向左平移个单位C.向右平移个单位 D.向左平移个单位9.已知等差数列的前项之和为,前项和为,则它的前项的和为()A.B.C.D.10.在数列中,,且数列是等比数列,其公比,则数列的最大项等于()A. B. C.或 D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,已知,,,则角__________.12.已知函数的定义域为,则实数的取值范围为_____.13.函数的定义域为_________.14.若直线l1:y=kx+1与直线l2关于点(2,3)对称,则直线l2恒过定点_____,l1与l2的距离的最大值是_____.15.已知一个三角形的三边长分别为3,5,7,则该三角形的最大内角为_________16.在中,角所对的边分别为,下列命题正确的是_____________.①总存在某个内角,使得;②存在某钝角,有;③若,则的最小角小于.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.自变量在什么范围取值时,函数的值等于0?大于0呢?小于0呢?18.在中,求的值.19.如图,在△ABC中,cosC=,角B的平分线BD交AC于点D,设∠CBD=θ,其中tanθ=﹣1.(1)求sinA的值;(2)若,求AB的长.20.如图,在四棱锥中,底面,,,,,点为棱的中点.(1)证明:;(2)求三棱锥的体积.21.已知等比数列的公比,前项和为,且.(1)求数列的通项公式;(2)设,求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

设出菱形的边长,在三角形ADE中,用余弦定理表示出cosA【题目详解】设菱形的边长为3a,在三角形ADE中,AD=3a,AE=a,DE=4,有余弦定理得cosA=10a2-166a故选:B【题目点拨】本小题主要考查余弦定理解三角形,考查同角三角函数的基本关系式,考查菱形的面积公式,考查二次函数最值的求法,属于中档题.2、A【解题分析】由,即,所以,由向量在向量方向上的投影为,则,即,所以,故选A.3、D【解题分析】

画出可行域,根据边界点的坐标计算出平面区域的面积.【题目详解】画出可行域如下图所示,其中,故平面区域为三角形,且三角形面积为,故选D.【题目点拨】本小题主要考查线性规划可行域面积的求法,考查数形结合的数学思想方法,属于基础题.4、B【解题分析】

根据分层抽样原理求出应抽取的管理人数.【题目详解】根据分层抽样原理知,应抽取管理人员的人数为:故选:B【题目点拨】本题考查了分层抽样原理应用问题,是基础题.5、A【解题分析】

由方程得出直线的截距,逐个选项验证即可.【题目详解】由截距式方程可得直线的横、纵截距分别为,直线的横、纵截距分别为选项A,由的图象可得,可得直线的截距均为正数,故A正确;选项B,只有当时,才有直线平行,故B错误;选项C,只有当时,才有直线的纵截距相等,故C错误;选项D,由的图象可得,可得直线的横截距为正数,纵截距为负数,由图像不对应,故D错误;故选:A【题目点拨】本题考查了直线的截距式方程,需理解截距的定义,属于基础题.6、D【解题分析】分析:根据频率分布直方图中众数与中位数的定义和计算方法,即可求解频率分布直方图的众数与中位数的值.详解:由题意,频率分布直方图中最高矩形的底边的中点的横坐标为数据的众数,所以中间一个矩形最该,故数据的众数为,而中位数是把频率分布直方图分成两个面积相等部分的平行于轴的直线横坐标,第一个矩形的面积为,第二个矩形的面积为,故将第二个矩形分成即可,所以中位数是,故选D.点睛:本题主要考查了频率分布直方图的中位数与众数的求解,其中频率分布直方图中小矩形的面积等于对应的概率,且各个小矩形的面积之和为1是解答的关键,着重考查了推理与计算能力.7、B【解题分析】

由向量的减法法则,将题中等式化简得,进而得到,由此可得以为邻边的平行四边形为矩形,得的形状是直角三角形。【题目详解】因为,,因为,所以,因为,所以,由此可得以为邻边的平行四边形为矩形,所以,得的形状是直角三角形。【题目点拨】本题给出向量等式,判断三角形的形状,着重考查平面向量的加法、减法法则和三角形的形状判断等知识。8、D【解题分析】

根据函数的平移原则,即可得出结果.【题目详解】因为,,所以为了得到函数的图象,只需将的图象上所有的点向左平移个单位.故选D【题目点拨】本题主要考查三角函数的平移,熟记左加右减的原则即可,属于基础题型.9、C【解题分析】试题分析:由于等差数列中也成等差数列,即成等差数列,所以,故选C.考点:等差数列前项和的性质.10、C【解题分析】

在数列中,,,且数列是等比数列,其公比,利用等比数列的通项公式可得:.可得,利用二次函数的单调性即可得出.【题目详解】在数列中,,,且数列是等比数列,其公比,.,.由或8时,,或9时,,数列的最大项等于或.故选:C.【题目点拨】本题考查等比数列的通项公式、累乘法、二次函数的单调性,考查推理能力与计算能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

先由正弦定理得到角A的大小,再由三角形内角和为得到结果.【题目详解】根据三角形正弦定理得到:,故得到或,因为故得到故答案为.【题目点拨】在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.12、【解题分析】

根据对数的真数对于0,再结合不等式即可解决.【题目详解】函数的定义域为等价于对于任意的实数,恒成立当时成立当时,等价于综上可得【题目点拨】本题主要考查了函数的定义域以及不等式恒成立的问题,函数的定义域常考的由1、,2、,3、.属于基础题.13、【解题分析】

根据对数函数的真数大于0,列出不等式求解集即可.【题目详解】对数函数f(x)=log2(x﹣1)中,x﹣1>0,解得x>1;∴f(x)的定义域为(1,+∞).故答案为:(1,+∞).【题目点拨】本题考查了求对数函数的定义域问题,是基础题.14、(4,5)4.【解题分析】

根据所过定点与所过定点关于对称可得,与的距离的最大值就是两定点之间的距离.【题目详解】∵直线:经过定点,又两直线关于点对称,则两直线经过的定点也关于点对称∴直线恒过定点,∴与的距离的最大值就是两定点之间的距离,即为.故答案为:,.【题目点拨】本题考查了过两条直线交点的直线系方程,属于基础题.15、【解题分析】

由题意可得三角形的最大内角即边7对的角,设为θ,由余弦定理可得cosθ的值,即可求得θ的值.【题目详解】根据三角形中,大边对大角,故边长分别为3,5,7的三角形的最大内角即边7对的角,设为θ,则由余弦定理可得cosθ,∴θ=,故答案为:C.【题目点拨】本题主要考查余弦定理的应用,大边对大角,已知三角函数值求角的大小,属于基础题.16、①③【解题分析】

①中,根据直角三角形、锐角三角形和钝角三角形分类讨论,得出必要一个角在内,即可判定;②中,利用两角和的正切公式,化简得到,根据钝角三角形,即可判定;③中,利用向量的运算,得到,由于不共线,得到,再由余弦定理,即可判定.【题目详解】由题意,对于①中,在中,当,则,若为直角三角形,则必有一个角在内;若为锐角三角形,则必有一个内角小于等于;若为钝角三角形,也必有一个角小于内,所以总存在某个内角,使得,所以是正确的;对于②中,在中,由,可得,由为钝角三角形,所以,所以,所以不正确;对于③中,若,即,即,由于不共线,所以,即,由余弦定理可得,所以最小角小于,所以是正确的.综上可得,命题正确的是①③.故答案为:①③.【题目点拨】本题以真假命题为载体,考查了正弦、余弦定理的应用,以及向量的运算及应用,其中解答中熟练应用解三角形的知识和向量的运算进行化简是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、当或时,函数的值等于0;当时,函数的值大于0;当或时,函数的值小于0.【解题分析】

将问题转化为解方程和解不等式,以及,分别求解即可.【题目详解】由题:由得:或;由得:;由得:或,综上所述:当或时,函数的值等于0;当时,函数的值大于0;当或时,函数的值小于0.【题目点拨】此题考查解二次方程和二次不等式,关键在于熟练掌握二次方程和二次不等式的解法,准确求解.18、【解题分析】

由即,解得:(因为舍去)或.19、(1)(2)【解题分析】

(1)根据二倍角公式及同角基本关系式,求出cos∠ABC,进而可求出sinA;(2)根据正弦定理求出AC,BC的关系,利用向量的数量积公式求出AC,可得BC,正弦定理可得答案.【题目详解】(1)由∠CBD=θ,且tanθ1,所以θ∈(0,),所以cos∠ABC,则sin∠ABC,由cosC,得:sinC,sinA=sin[π﹣(∠ABC+∠C)]=sin(∠ABC+∠C).(2)由正弦定理,得,即BCAC;又•AC2•21,∴AC=5,∴ABAC=4.【题目点拨】本题考查了二倍角公式、同角基本关系式和正弦定理的灵活运用和计算能力,是中档题.20、(1)见解析;(2)【解题分析】

(1)以A为坐标原点,建立如图所示的空间直角坐标系,求出BE,DC的方向向量,根据•=0,可得BE⊥DC;(2)由点为棱的中点,且底面,利用等体积法得.【题目详解】(1)∵底面,,以为坐标原点,建立如图所示的空间直角坐标系,∵,,点为棱的中点.∴(1,0,0),(2,2,0),(0,2,0),(0,0,2),(1,1,1)∴=(0,1,1),=(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论