版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省绍兴市诸暨中学高一数学第二学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量若与平行,则实数的值是()A.-2 B.0 C.1 D.22.已知某数列的前项和(为非零实数),则此数列为()A.等比数列 B.从第二项起成等比数列C.当时为等比数列 D.从第二项起的等比数列或等差数列3.在中,角A,B,C的对边分别为a,b,c,若,则角=()A. B. C. D.4.向量,则()A. B.C.与的夹角为60° D.与的夹角为30°5.若函数只有一个零点,则实数的取值范围是A.或 B.C.或 D.6.已知为直线,,为两个不同的平面,则下列结论正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则7.如图,随机地在图中撒一把豆子,则豆子落到阴影部分的概率是()A.12 B.34 C.18.若,则下列不等式不成立的是()A. B. C. D.9.若直线经过点,则此直线的倾斜角是()A. B. C. D.10.把函数的图象上的所有点的横坐标缩小到原来的一半(纵坐标不变),然后把图象向左平移个单位,则所得图形对应的函数解析式为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,则函数的最小值是_________.12.已知变量x,y线性相关,其一组数据如下表所示.若根据这组数据求得y关于x的线性回归方程为,则______.x1245y5.49.610.614.413.等差数列中,,,设为数列的前项和,则_________.14.已知等差数列中,,则_______15.函数的定义域记作集合,随机地投掷一枚质地均匀的正方体骰子(骰子的每个面上分别标有点数,,,),记骰子向上的点数为,则事件“”的概率为________.16.函数在区间上的值域为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知的三个内角的对边分别为,且,(1)求证:;(2)若是锐角三角形,求的取值范围.18.在中,角所对的边分别为,且.(1)求边长;(2)若的面积为,求边长.19.设平面向量,,函数.(Ⅰ)求时,函数的单调递增区间;(Ⅱ)若锐角满足,求的值.20.已知数列为等差数列,且满足,,数列的前项和为,且,.(Ⅰ)求数列,的通项公式;(Ⅱ)若对任意的,不等式恒成立,求实数的取值范围.21.已知等比数列的公比,且,.(1)求数列的通项公式;(2)设,是数列的前项和,对任意正整数不等式恒成立,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
因为,所以由于与平行,得,解得.2、D【解题分析】
设数列的前项和为,运用数列的递推式:当时,,当时,,结合等差数列和等比数列的定义和通项公式,即可得到所求结论.【题目详解】设数列的前项和为,对任意的,(为非零实数).当时,;当时,.若,则,此时,该数列是从第二项起的等差数列;若且,不满足,当时,,此时,该数列是从第二项起的等比数列.综上所述,此数列为从第二项起的等比数列或等差数列.故选:D.【题目点拨】本题考查数列的递推式的运用,等差数列和等比数列的定义和通项公式,考查分类讨论思想和运算能力,属于中档题.3、A【解题分析】
由正弦定理可解得,利用大边对大角可得范围,从而解得A的值.【题目详解】,由正弦定理可得:,,由大边对大角可得:,解得:.故选A.【题目点拨】本题主要考查了正弦定理,大边对大角,正弦函数的图象和性质等知识的应用,解题时要注意分析角的范围.4、B【解题分析】试题分析:由,可得,所以,故选B.考点:向量的运算.5、A【解题分析】
根据题意,原题等价于,再讨论即可得到结论.【题目详解】由题,故函数有一个零点等价于即当时,,,符合题意;当,时,令,满足解得,综上的取值范围是或故选:A.【题目点拨】本题考查函数的零点,对数函数的性质,二次函数根的分布问题,考查了分类讨论思想,属于中档题.6、C【解题分析】
利用直线与平面平行、垂直的判断即可。【题目详解】对于A.若,,则或,所以A错对于B.若,,则,应该为,所以B错对于D.若,,则或,所以D错。所以选择C【题目点拨】本题主要考查了直线与平面垂直和直线与平面平行的性质。属于基础题。7、D【解题分析】
求出阴影部分的面积,然后与圆面积作比值即得.【题目详解】圆被8等分,其中阴影部分有3分,因此所求概率为P=3故选D.【题目点拨】本题考查几何概型,属于基础题.8、B【解题分析】
根据不等式的基本性质、重要不等式、函数的单调性即可得出结论.【题目详解】解:∵,∴,,∴,即,故A成立;,即,故B不成立;,即,故C成立;∵指数函数在上单调递增,且,∴,故D成立;故选:B.【题目点拨】本题主要考查不等式的基本性质,作差法比较大小,属于基础题.9、D【解题分析】
先通过求出两点的斜率,再通过求出倾斜角的值。【题目详解】,选D.【题目点拨】先通过求出两点的斜率,再通过求出倾斜角的值。需要注意的是斜率不存在的情况。10、D【解题分析】
函数的图象上的所有点的横坐标缩小到原来的一半(纵坐标不变),的系数变为原来的2倍,即为2,然后根据平移求出函数的解析式.【题目详解】函数的图象上的所有点的横坐标缩小到原来的一半(纵坐标不变),得到,把图象向左平移个单位,得到故选:.【题目点拨】本题考查函数的图象变换.准确理解变换规则是关键,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
利用基本不等式可求得函数的最小值.【题目详解】,由基本不等式得,当且仅当时,等号成立,因此,当时,函数的最小值是.故答案为:.【题目点拨】本题考查利用基本不等式求函数的最值,考查计算能力,属于基础题.12、4.3【解题分析】
由所给数据求出,根据回归直线过中心点可求解.【题目详解】由表格得到,,将样本中心代入线性回归方程得.故答案为:4.3【题目点拨】本题考查线性回归直线方程,掌握回归直线的性质是解题关键,即回归直线必过中心点.13、【解题分析】
由等差数列的性质可得出的值,然后利用等差数列的求和公式可求出的值.【题目详解】由等差数列的基本性质可得,因此,.故答案为:.【题目点拨】本题考查等差数列求和,同时也考查了等差数列基本性质的应用,考查计算能力,属于基础题.14、【解题分析】
设等差数列的公差为,用与表示等式,再用与表示代数式可得出答案。【题目详解】设等差数列的公差为,则,因此,,故答案为:。【题目点拨】本题考查等差数列中项的计算,解决等差数列有两种方法:基本性质法(与下标相关的性质)以及基本量法(用首项和公差来表示相应的量),一般利用基本量法来进行计算,此外,灵活利用与下标有关的基本性质进行求解,能简化计算,属于中等题。15、【解题分析】要使函数有意义,则且,即且,即,随机地投掷一枚质地均匀的正方体骰子,记骰子向上的点数为,则,则事件“”的概率为.16、【解题分析】
由二倍角公式降幂,再由两角和的正弦公式化函数为一个角的一个三角函数形式,结合正弦函数性质可求得值域.【题目详解】,,则,.故答案为:.【题目点拨】本题考查三角恒等变换(二倍角公式、两角和的正弦公式),考查正弦函数的的单调性和最值.求解三角函数的性质的性质一般都需要用三角恒等变换化函数为一个角的一个三角函数形式,然后结合正弦函数的性质得出结论.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解题分析】
(1)由,联立,得,然后边角转化,利用和差公式化简,即可得到本题答案;(2)利用正弦定理和,得,再确定角C的范围,即可得到本题答案.【题目详解】解:(1)锐角中,,故由余弦定理可得:,,,即,∴利用正弦定理可得:,即,,可得:,∴可得:,或(舍去),.(2),均为锐角,由于:,,.再根据,可得,,【题目点拨】本题主要考查正余弦定理的综合应用,其中涉及到利用三角函数求取值范围的问题.18、(1);(2).【解题分析】试题分析:本题主要考查正弦定理、余弦定理、特殊角的三角函数值、三角形面积公式等基础知识,同时考查考生的分析问题解决问题的能力和运算求解能力.第一问,利用正弦定理将边换成角,消去,解出角C,再利用解出边b的长;第二问,利用三角形面积公式,可直接解出a边的值,再利用余弦定理解出边c的长.试题解析:(Ⅰ)由正弦定理得,又,所以,.因为,所以.…6分(Ⅱ)因为,,所以.据余弦定理可得,所以.…12分考点:正弦定理、余弦定理、特殊角的三角函数值、三角形面积公式.19、(Ⅰ);(Ⅱ).【解题分析】
(Ⅰ)利用向量的数量积结合两角和与差的三角函数化简函数为一个角的一个三角函数的形式,利用正弦函数的单调增区间,求得时函数f(x)的单调递增区间;(Ⅱ)若锐角α满足,可得cos的值,然后求的值.【题目详解】解:(Ⅰ).由得,其中单调递增区间为,可得,∴时f(x)的单调递增区间为.(Ⅱ),∵α为锐角,∴..【题目点拨】本题考查向量的数量积以及三角函数的化简求值,考查了二倍角公式的应用,考查转化思想以及计算能力,属于中档题.20、(Ⅰ);(Ⅱ)【解题分析】
(Ⅰ)数列的通项公式,利用,可求公差,然后可求;的通项公式可以利用退位相减法求解;(Ⅱ)求出代入,利用分离参数法可求实数的取值范围.【题目详解】解:(Ⅰ)∵,∴,∴,即,∵,∴,∴,∴,又,也成立,∴是以1为首项,3为公比的等比数列,∴.(Ⅱ),∴对恒成立,即对恒成立,令,,当时,,当时,,∴,故,即的取值范围为.【题目点拨】本题主要考查数列通项公式的求解和参数范围的确定,熟练掌握公式是求解关键,侧重考查数学运算的核心素养.21、(1);(2)【解题分析】
(1)由,,根据等比数列的通项公式可解得,,进
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024水箱安全检测与销售服务合作协议3篇
- 2025年度销售合同终止及市场拓展合作管理协议2篇
- 个体工商户商铺租赁标准协议模板版A版
- 2024年度商铺离婚协议及企业经营权转让与风险分担合同3篇
- 二零二五年豪华二手车经销合作框架合同2篇
- 二零二五年砂石料买卖协议3篇
- 2024标准窗帘买卖合同样本版B版
- 二零二五版25MW柴油发电机电站发电设备安装调试服务协议3篇
- 西安明德理工学院《项目管理与案例分析》2023-2024学年第一学期期末试卷
- 2024版家政服务三方合同范本
- 课题申报书:GenAI赋能新质人才培养的生成式学习设计研究
- 外配处方章管理制度
- 2025年四川长宁县城投公司招聘笔试参考题库含答案解析
- 骆驼祥子-(一)-剧本
- 《工程勘察设计收费标准》(2002年修订本)
- 全国医院数量统计
- 【MOOC】PLC技术及应用(三菱FX系列)-职教MOOC建设委员会 中国大学慕课MOOC答案
- 2023七年级英语下册 Unit 3 How do you get to school Section A 第1课时(1a-2e)教案 (新版)人教新目标版
- 泌尿科主任述职报告
- 2024年医美行业社媒平台人群趋势洞察报告-医美行业观察星秀传媒
- 新零售门店运营管理流程手册
评论
0/150
提交评论