2024届浙江省杭州北斗联盟数学高一第二学期期末综合测试模拟试题含解析_第1页
2024届浙江省杭州北斗联盟数学高一第二学期期末综合测试模拟试题含解析_第2页
2024届浙江省杭州北斗联盟数学高一第二学期期末综合测试模拟试题含解析_第3页
2024届浙江省杭州北斗联盟数学高一第二学期期末综合测试模拟试题含解析_第4页
2024届浙江省杭州北斗联盟数学高一第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省杭州北斗联盟数学高一第二学期期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线是平面的斜线,则内不存在与(

)A.相交的直线 B.平行的直线C.异面的直线 D.垂直的直线2.向量,,若,则()A.2 B. C. D.3.若变量满足约束条件,则的最大值是()A.0 B.2 C.5 D.64.已知,满足,则()A. B. C. D.5.若直线xa+yb=1(a>0,b>0)A.3 B.4 C.3+22 D.6.如图,正方体ABCD-A1B1C1D1的棱长为2,E是棱AB的中点,F是侧面AA1D1D内一点,若EF∥平面BB1D1D,则EF长度的范围为()A. B. C. D.7.某部门为了了解用电量y(单位:度)与气温x(单位:°C)之间的关系,随机统计了某3天的用电量与当天气温如表所示.由表中数据得回归直线方程y=-0.8x+a,则摄氏温度(°C)4611用电量度数1074A.12.6 B.13.2 C.11.8 D.12.88.若向量,,则点B的坐标为()A. B. C. D.9.若,且,则下列不等式中正确的是()A. B. C. D.10.圆的半径是,则的圆心角与圆弧围成的扇形面积是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.空间一点到坐标原点的距离是_______.12.下图是2016年在巴西举行的奥运会上,七位评委为某体操运动员的单项比赛打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的方差为__________.13.已知,,则的值为.14.在数列中,,当时,.则数列的前项和是_____.15.如图,在正方体中,点是棱上的一个动点,平面交棱于点.下列命题正确的为_______________.①存在点,使得//平面;②对于任意的点,平面平面;③存在点,使得平面;④对于任意的点,四棱锥的体积均不变.16.已知求______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,将的图象向左平移个单位后得到的图象,且在区间内的最大值为.(1)求实数的值;(2)求函数与直线相邻交点间距离的最小值.18.已知向量,.(I)若,共线,求的值.(II)若,求的值;(III)当时,求与夹角的余弦值.19.已知圆经过(2,5),(﹣2,1)两点,并且圆心在直线yx上.(1)求圆的标准方程;(2)求圆上的点到直线3x﹣4y+23=0的最小距离.20.已知数列中,,.(1)令,求证:数列为等比数列;(2)求数列的通项公式;(3)令,为数列的前项和,求.21.单调递增的等差数列满足,且成等比数列.(1)求数列的通项公式;(2)设,求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

根据平面的斜线的定义,即可作出判定,得到答案.【题目详解】由题意,直线是平面的斜线,由斜线的定义可知与平面相交但不垂直的直线叫做平面的斜线,所以在平面内肯定不存在与直线平行的直线.故答案为:B【题目点拨】本题主要考查了直线与平面的位置关系的判定及应用,其中解答中熟记平面斜线的定义是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.2、C【解题分析】试题分析:,,得得,故选C.考点:向量的垂直运算,向量的坐标运算.3、C【解题分析】

由题意作出不等式组所表示的平面区域,将化为,相当于直线的纵截距,由几何意义可得结果.【题目详解】由题意作出其平面区域,令,化为,相当于直线的纵截距,由图可知,,解得,,则的最大值是,故选C.【题目点拨】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.4、A【解题分析】

根据对数的化简公式得到,由指数的运算公式得到=,由对数的性质得到>0,,进而得到结果.【题目详解】已知,=,>0,进而得到.故答案为A.【题目点拨】本题考查了指对函数的运算公式和对数函数的性质;比较大小常用的方法有:两式做差和0比较,分式注意同分,进行因式分解为两式相乘的形式;或者利用不等式求得最值,判断最值和0的关系.5、C【解题分析】

将1,2代入直线方程得到1a+2【题目详解】将1,2代入直线方程得到1a+b=(a+b)(当a=2故答案选C【题目点拨】本题考查了直线方程,均值不等式,1的代换是解题的关键.6、C【解题分析】

过作,交于点,交于,根据线面垂直关系和勾股定理可知;由平面可证得面面平行关系,利用面面平行性质可证得为中点,从而得到最小值为重合,最大值为重合,计算可得结果.【题目详解】过作,交于点,交于,则底面平面,平面,平面平面,又平面平面又平面平面,平面为中点为中点,则为中点即在线段上,,则线段长度的取值范围为:本题正确选项:【题目点拨】本题考查立体几何中线段长度取值范围的求解,关键是能够确定动点的具体位置,从而找到临界状态;本题涉及到立体几何中线面平行的性质、面面平行的判定与性质等定理的应用.7、A【解题分析】

计算数据中心点,代入回归方程得到答案.【题目详解】x=4+6+113=7,代入回归方程y7=-0.8×7+a故答案选A【题目点拨】本题考查了回归方程,掌握回归方程过中心点是解题的关键.8、B【解题分析】

根据向量的坐标运算得到,得到答案.【题目详解】,故.故选:.【题目点拨】本题考查了向量的坐标运算,意在考查学生的计算能力.9、D【解题分析】

利用不等式的性质依次对选项进行判断。【题目详解】对于A,当,且异号时,,故A不正确;对于B,当,且都为负数时,,故B不正确;对于C,取,则,故不正确;对于D,由于,,则,所以,即,故D正确;故答案选D【题目点拨】本题主要考查不等式的基本性质,在解决此类选择题时,可以用特殊值法,依次对选项进行排除。10、C【解题分析】

先将化为弧度数,再利用扇形面积计算公式即可得出.【题目详解】所以扇形的面积为:故选:C【题目点拨】题考查了扇形面积计算公式,考查了推理能力与计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

直接运用空间两点间距离公式求解即可.【题目详解】由空间两点距离公式可得:.【题目点拨】本题考查了空间两点间距离公式,考查了数学运算能力.12、【解题分析】由平均数公式可得,故所求数据的方差是,应填答案。13、3【解题分析】

,故答案为3.14、【解题分析】

先利用累加法求出数列的通项公式,然后将数列的通项裂开,利用裂项求和法求出数列的前项和.【题目详解】当时,.所以,,,,,.上述等式全部相加得,.,因此,数列的前项和为,故答案为:.【题目点拨】本题考查累加法求数列通项和裂项法求和,解题时要注意累加法求通项和裂项法求和对数列递推公式和通项公式的要求,考查运算求解能力,属于中等题.15、①②④【解题分析】

根据线面平行和线面垂直的判定定理,以及面面垂直的判定定理和性质分别进行判断即可.【题目详解】①当为棱上的一中点时,此时也为棱上的一个中点,此时//,满足//平面,故①正确;②连结,则平面,因为平面,所以平面平面,故②正确;③平面,不可能存在点,使得平面,故③错误;④四棱锥的体积等于,设正方体的棱长为1.∵无论、在何点,三角形的面积为为定值,三棱锥的高,保持不变,三角形的面积为为定值,三棱锥的高为,保持不变.∴四棱锥的体积为定值,故④正确.故答案为①②④.【题目点拨】本题主要考查空间直线和平面平行或垂直的位置关系的判断,解答本题的关键正确利用分割法求空间几何体的体积的方法,综合性较强,难度较大.16、23【解题分析】

直接利用数量积的坐标表示求解.【题目详解】由题得.故答案为23【题目点拨】本题主要考查平面向量的数量积的计算,意在考查学生对该知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)1;(2)【解题分析】

(1)将化简可得,再由平移变换可得,由在区间内的最大值为,可得的值;(2)解方程,可得所求相交点距离的最小值.【题目详解】解:(1)所以,,∴当时,即时,函数取得最大值,∴.(2)根据题意,令,,∴或,.解得或,.因为,当时取等号,∴相邻交点间距离的最小值是.【题目点拨】本题主要考查三角函数的平移变化及三角恒等变换与三角函数的性质,属于中档题.18、(I);(II);(III)【解题分析】

(1)根据题意,由向量平行的坐标公式可得﹣2x=4,解可得x的值,即可得答案;(2)若,则有,结合向量数量积的坐标可得,即4x﹣2=0,解可得x的值,即可得答案;(3)根据题意,由x的值可得的坐标,由向量的坐标计算公式可得、和的值,结合,计算可得答案.解:(I)∵与共线,∴,(II)∵,∴,∴(III)∵,∵,,∴,又∵,∴.19、(1)(x﹣2)2+(y﹣1)2=16(2)1【解题分析】

(1)先求出圆心的坐标和圆的半径,即得圆的标准方程;(2)求出圆心到直线3x﹣4y+23=0的距离即得解.【题目详解】(1)A(2,5),B(﹣2,1)中点为(0,3),经过A(2,5),B(﹣2,1)的直线的斜率为,所以线段AB中垂线方程为,联立直线方程y解得圆心坐标为(2,1),所以圆的半径.所以圆的标准方程为(x﹣2)2+(y﹣1)2=16.(2)圆的圆心为(2,1),半径r=4.圆心到直线3x﹣4y+23=0的距离d.则圆上的点到直线3x﹣4y+23=0的最小距离为d﹣r=1.【题目点拨】本题主要考查圆的标准方程的求法和圆上的点到直线的距离的最值的求法,意在考查学生对这些知识的理解掌握水平.20、(1)见解析(2)(3)【解题分析】

(1)计算,得证数列为等比数列.(2)先求出的通项公式,再计算数列的通项公式.(3)计算,根据错位相减法和分组求和法得到答案.【题目详解】(1),,,故数列是以为首项,以为公比的等比数列.(2)由(1)知,由,得数列的通项公式为.(3)由(2)知,记.有.两式作差得,得,则.【题目点拨】本题考

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论