




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江西省南昌第二中学高一数学第二学期期末达标测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数的图象向右平移个单位长度,所得图象对应的函数A.在区间上单调递增 B.在区间上单调递减C.在区间上单调递增 D.在区间上单调递减2.若一架飞机向目标投弹,击毁目标的概率为,目标未受损的概率为,则目标受损但未被击毁的概率为()A. B. C. D.3.如图所示:在正方体中,设直线与平面所成角为,二面角的大小为,则为()A. B. C. D.4.长方体共顶点的三个相邻面面积分别为,这个长方体的顶点在同一个球面上,则这个球的表面积为()A. B. C. D.5.一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,从中任意取出一个,则取出的小正方体两面涂有油漆的概率是()A.127 B.29 C.46.下列各角中,与角终边相同的角是()A. B. C. D.7.在等差数列中,若,则()A.45 B.75 C.180 D.3208.已知函数f(x)=5sinωx-π3(ω>0),若A.0,16 B.0,169.一组数平均数是,方差是,则另一组数,的平均数和方差分别是()A. B.C. D.10.在平行四边形ABCD中,若,则必有()A. B.或C.ABCD是矩形 D.ABCD是正方形二、填空题:本大题共6小题,每小题5分,共30分。11.等腰直角中,,CD是AB边上的高,E是AC边的中点,现将沿CD翻折成直二面角,则异面直线DE与AB所成角的大小为________.12.已知直线平面,,那么在平面内过点P与直线m平行的直线有________条.13.若锐角满足则______.14.在Rt△ABC中,∠B=90°,BC=6,AB=8,点M为△ABC内切圆的圆心,过点M作动直线l与线段AB,AC都相交,将△ABC沿动直线l翻折,使翻折后的点A在平面BCM上的射影P落在直线BC上,点A在直线l上的射影为Q,则的最小值为_____.15.直线与直线垂直,则实数的值为_______.16.数列满足,(且),则数列的通项公式为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图半圆的直径为4,为直径延长线上一点,且,为半圆周上任一点,以为边作等边(、、按顺时针方向排列)(1)若等边边长为,,试写出关于的函数关系;(2)问为多少时,四边形的面积最大?这个最大面积为多少?18.设是两个相互垂直的单位向量,且(Ⅰ)若,求的值;(Ⅱ)若,求的值.19.已知圆经过,,三点.(1)求圆的标准方程;(2)若过点N的直线被圆截得的弦AB的长为,求直线的倾斜角.20.在△ABC中,角A,B,C所对的边分别为a,b,c,且acosC+ccosA=2bcosA.
(1)求角A的值;
(2)若,,求△ABC的面积S.21.己知,,且函数的图像上的任意两条对称轴之间的距离的最小值是.(1)求的值:(2)将函数的图像向右平移单位后,得到函数的图像,求函数在上的最值,并求取得最值时的的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
由题意首先求得平移之后的函数解析式,然后确定函数的单调区间即可.【题目详解】由函数图象平移变换的性质可知:将的图象向右平移个单位长度之后的解析式为:.则函数的单调递增区间满足:,即,令可得一个单调递增区间为:.函数的单调递减区间满足:,即,令可得一个单调递减区间为:,本题选择A选项.【题目点拨】本题主要考查三角函数的平移变换,三角函数的单调区间的判断等知识,意在考查学生的转化能力和计算求解能力.2、D【解题分析】
由已知条件利用对立事件概率计算公式直接求解.【题目详解】由于一架飞机向目标投弹,击毁目标的概率为,目标未受损的概率为;所以目标受损的概率为:;目标受损分为击毁和未被击毁,它们是对立事件;所以目标受损的概率目标受损被击毁的概率目标受损未被击毁的概率;故目标受损但未被击毁的概率目标受损的概率目标受损被击毁的概率,即目标受损但未被击毁的概率;故答案选D【题目点拨】本题考查概率的求法,注意对立事件概率计算公式的合理运用,属于基础题.3、A【解题分析】
连结BC1,交B1C于O,连结A1O,则∠BA1O是直线A1B与平面A1DCB1所成角θ1,由BC⊥DC,B1C⊥DC,知∠BCB1是二面角A1﹣DC﹣A的大小θ2,由此能求出结果.【题目详解】连结BC1,交B1C于O,连结A1O,∵在正方体ABCD﹣A1B1C1D1中,BC1⊥B1C,BC1⊥DC,∴BO⊥平面A1DCB1,∴∠BA1O是直线A1B与平面A1DCB1所成角θ1,∵BO=A1B,∴θ1=30°;∵BC⊥DC,B1C⊥DC,∴∠BCB1是二面角A1﹣DC﹣A的大小θ2,∵BB1=BC,且BB1⊥BC,∴θ2=45°.故选A.【题目点拨】本题考查线面角、二面角的求法,解题时要认真审题,注意空间思维能力的培养,属于中档题.4、A【解题分析】
设长方体的棱长为,球的半径为,根据题意有,再根据球的直径是长方体的体对角线求解.【题目详解】设长方体的棱长为,球的半径为,根据题意,,解得,所以,所以外接球的表面积,故选:A【题目点拨】本题主要考查了球的组合体问题,还考查了运算求解的能力,属于基础题.5、C【解题分析】
先求出基本事件总数n=27,在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上,且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,由此能求出在27个小正方体中,任取一个其两面涂有油漆的概率.【题目详解】∵一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,∴基本事件总数n=27,在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上,且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,则在27个小正方体中,任取一个其两面涂有油漆的概率P=1227=故选:C【题目点拨】本题考查概率的求法,考查古典概型、正方体性质等基础知识,考查推理论证能力、空间想象能力,考查函数与方程思想,是基础题.6、B【解题分析】
给出具体角度,可以得到终边相同角的表达式.【题目详解】角终边相同的角可以表示为,当时,,所以答案选择B【题目点拨】判断两角是否是终边相同角,即判断是否相差整数倍.7、C【解题分析】试题分析:因为数列为等差数列,且,所以,,从而,所以,而,所以,故选C.考点:等差数列的性质.8、B【解题分析】
由题得ωπ-π3<ωx-【题目详解】因为π<x≤2π,ω>0,所以ωπ-π因为fx在区间(π,2π]所以ωπ-π3≥kπ解得k+13≤ω<因为k+1所以-4因为k∈Z,所以k=-1或k=0.当k=-1时,0<ω<16;当k=0时,故选:B【题目点拨】本题主要考查三角函数的零点问题和三角函数的图像和性质,意在考查学生对该知识的理解掌握水平,属于中档题.9、B【解题分析】
直接利用公式:平均值方差为,则的平均值和方差为:得到答案.【题目详解】平均数是,方差是,的平均数为:方差为:故答案选B【题目点拨】本题考查了平均数和方差的计算:平均数是,方差是,则的平均值和方差为:.10、C【解题分析】
由,化简可得,得到,又由四边形为平行四边形,即可得到答案.【题目详解】由,则,即,化简可得,所以,即,又由四边形为平行四边形,所以该四边形为矩形,故选C.【题目点拨】本题主要考查了向量的基本运算,以及向量的垂直关系的应用,其中解答中熟记向量的基本运算,以及向量的垂直的判定是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
取的中点,连接,则与所成角即为与所成角,根据已知可得,,可以判断三角形为等边三角形,进而求出异面直线直线DE与AB所成角.【题目详解】取的中点,连接,则,直线DE与AB所成角即为与所成角,,,,,,即三角形为等边三角形,异面直线DE与AB所成角的大小为.故答案为:【题目点拨】本题考查立体几何中的翻折问题,考查了异面直线所成的角,考查了学生的空间想象能力,属于基础题.12、1【解题分析】
利用线面平行的性质定理来进行解答.【题目详解】过直线与点可确定一个平面,由于为公共点,所以两平面相交,不妨设交线为,因为直线平面,所以,其它过点的直线都与相交,所以与也不会平行,所以过点且平行于的直线只有一条,在平面内,故答案为:1.【题目点拨】本题考查线面平行的性质定理,是基础题.13、【解题分析】
由已知利用同角三角函数基本关系式可求,的值,利用两角差的余弦公式即可计算得解.【题目详解】、为锐角,,,,,,.故答案为:.【题目点拨】本题主要考查了同角三角函数基本关系式,两角差的余弦函数公式在三角函数化简求值中的应用,属于基础题.14、825【解题分析】
以AB,BC所在直线为坐标轴建立平面直角坐标系,设直线l的斜率为k,用k表示出|PQ|,|AQ|,利用基本不等式得出答案.【题目详解】过点M作△ABC的三边的垂线,设⊙M的半径为r,则r2,以AB,BC所在直线为坐标轴建立平面直角坐标系,如图所示,则M(2,2),A(0,8),因为A在平面BCM的射影在直线BC上,所以直线l必存在斜率,过A作AQ⊥l,垂足为Q,交直线BC于P,设直线l的方程为:y=k(x﹣2)+2,则|AQ|,又直线AQ的方程为:yx+8,则P(8k,0),所以|AP|8,所以|PQ|=|AP|﹣|AQ|=8,所以,①当k>﹣3时,4(k+3)25≥825,当且仅当4(k+3),即k3时取等号;②当k<﹣3时,则4(k+3)23≥823,当且仅当﹣4(k+3),即k3时取等号.故答案为:825【题目点拨】本题考查了考查空间距离的计算,考查基本不等式的运算,意在考查学生对这些知识的理解掌握水平.15、【解题分析】
由题得(-1),解之即得a的值.【题目详解】由题得(-1),所以a=2.故答案为;2【题目点拨】本题主要考查两直线垂直的斜率关系,意在考查学生对该知识的理解掌握水平和分析推理能力.16、【解题分析】
利用累加法和裂项求和得到答案.【题目详解】当时满足故答案为【题目点拨】本题考查了数列的累加法,裂项求和法,意在考查学生对于数列公式和方法的灵活运用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)θ=时,四边形OACB的面积最大,其最大面积为.【解题分析】
(1)根据余弦定理可求得(2)先表示出△ABC的面积及△OAB的面积,进而表示出四边形OACB的面积,并化简函数的解析式为正弦型函数的形式,再结合正弦型函数最值的求法进行求解.【题目详解】(1)由余弦定理得则(2)四边形OACB的面积=△OAB的面积+△ABC的面积则△ABC的面积△OAB的面积•OA•OB•sinθ•2•4•sinθ=4sinθ四边形OACB的面积4sinθ=sin(θ﹣)∴当θ﹣=,即θ=时,四边形OACB的面积最大,其最大面积为.【题目点拨】本题考查利用正余弦定理求解面积最值,其中准确列出面积表达式是关键,考查化简求值能力,是中档题18、(Ⅰ)(Ⅱ)【解题分析】
(Ⅰ),则存在唯一的使,解得所求参数的值;(Ⅱ)若,则,解得所求参数的值.【题目详解】解:(Ⅰ)若,则存在唯一的,使,,当时,;(Ⅱ)若,则,因为是两个相互垂直的单位向量,当时,.【题目点拨】本题考查两个向量平行、垂直的性质,两个向量的数量积公式的应用.19、(1)(2)30°或90°.【解题分析】
(1)解法一:将圆的方程设为一般式,将题干三个点代入圆的方程,解出相应的参数值,即可得出圆的一般方程,再化为标准方程;解法二:求出线段和的中垂线方程,将两中垂线方程联立求出交点坐标,即为圆心坐标,然后计算为圆的半径,即可写出圆的标准方程;(2)先利用勾股定理计算出圆心到直线的距离为,并对直线的斜率是否存在进行分类讨论:一是直线的斜率不存在,得出直线的方程为,验算圆心到该直线的距离为;二是当直线的斜率存在时,设直线的方程为,并表示为一般式,利用圆心到直线的距离为得出关于的方程,求出的值.结合前面两种情况求出直线的倾斜角.【题目详解】(1)解法一:设圆的方程为,则∴即圆为,∴圆的标准方程为;解法二:则中垂线为,中垂线为,∴圆心满足∴,半径,∴圆的标准方程为.(2)①当斜率不存在时,即直线到圆心的距离为1,也满足题意,此时直线的倾斜角为90°,②当斜率存在时,设直线的方程为,由弦长为4,可得圆心到直线的距离为,,∴,此时直线的倾斜角为30°,综上所述,直线的倾斜角为30°或90°.【题目点拨】本题考查圆的方程以及直线截圆所得弦长的计算,在求直线与圆所得弦长的计算中,问题的核心要转化为弦心距的计算,弦心距的计算主要有以下两种方式:一是利用勾股定理计算,二是利用点到直线的距离公式计算圆心到直线的距离.20、(1)(1)【解题分析】试题分析:(1)由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业遗址改造的绿色设计方法与技术研究
- 工业自动化技术的创新与应用前景
- 工作之余如何更好地学习与进修针对职场人士的学习建议
- 工业节能的途径与实施策略
- 工作中的创新与创造力培养
- 工作计划制定的技巧与实践
- 工作场所中冲突解决与沟通能力提升
- 工厂企业的消防安全管理
- 工程机械中电液伺服系统的原理与应用研究
- 工程质量管理流程及常见问题解决
- 车辆收费及管理制度
- T/CAS 612-2022碳中和管理体系要求
- 2025-2030中国显微镜行业市场深度调研及发展趋势与投资战略研究报告
- 平台合伙人合同协议书
- 运维安全保密措施
- 粮食加工消防安全管理规定
- 《智能驾驶技术解析》课件
- 信息管理岗试题及答案
- GA/T 2160-2024法庭科学资金数据检验规程
- 2024北京西城区五年级(下)期末语文试题及答案
- 2025至2030中国ORC低温余热发电系统行业发展前景预测与投资建议研究报告
评论
0/150
提交评论