版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.3勾股定理的应用第一章勾股定理导入新课讲授新课当堂练习课堂小结
在A点的小狗,为了尽快吃到B点的香肠,它选择AB路线,而不选择A
CB路线,难道小狗也懂数学?CBAAC+CB>AB(两点之间线段最短)情境引入思考:在立体图形中,怎么寻找最短线路呢?讲授新课立体图形中两点之间的最短距离一BA问题:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?圆柱爬行路径:(1)(2)(3)(4)ABABABAB如图所示,有一个圆柱,它的高是12cm,底面上圆的周长等于18cm,在圆柱下底面的点A处有一只蚂蚁,它想吃到上底面上与点A相对的点B处的食物,沿圆柱侧面爬行到B点,求其爬行的最短路程是多少?C解:由题意得展开图,知AB即为最短路径,其中AC=12,BC=故,最短路径是15cm。转化BA数学思想:立体图形平面图形转化展开讨论:1、蚂蚁怎样沿正方体表面从A点爬行到G点?2、有最短路径吗?若有,那条最短?你是怎么确定呢?ABCDEFGH
以小组为单位,研究蚂蚁在正方体的A点沿表面爬行到G点的问题.表面正方体爬行路径ABFEHGABCDEFGH前(后)上(下)ABCDEFGHBCGFEHABCDEFGH右(左)上(下)前(后)右(左)BCAEFG
(1)如把正方体变成如左图的长方体,长方体底面长为2,宽为1,高为4,蚂蚁从A点沿长方体表面爬到E点有多少种爬行可能?那种爬行路径的距离最短?是多少?BB18AB2610B3AB12=102+(6+8)2=296AB22=82+(10+6)2=320AB32=62+(10+8)2=360解:长方体侧面展开图一共有三种情况,如上图,其距离分别是:第一种:第二种:第三种:例题变式:DAGHFE241左(右)上(下)(1)BAGFHE241前(后)上(下)(2)ABCFGE412
前(后)右(左)(3)总结:四棱柱给出的长、宽、高三个数据,把较小的两个数据的和作为一条直角边的长,最大的数据作为另一条直角边的长,这时斜边的长即为最短距离。勾股定理的实际应用二问题:李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺.(1)你能替他想办法完成任务吗?解:连接对角线AC,只要分别量出AB、BC、AC的长度即可.AB2+BC2=AC2△ABC为直角三角形(2)量得AD长是30cm,AB长是40cm,BD长是50cm.AD边垂直于AB边吗?解:AD2+AB2=302+402=502=BD2得∠DAB=90°,AD边垂直于AB边.(3)若随身只有一个长度为20cm的刻度尺,能有办法检验AD边是否垂直于AB边吗?解:在AD上取点M,使AM=9,在AB上取点N使AN=12,测量MN是否是15,是,就是垂直;不是,就是不垂直.例2
如图是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长.已知滑梯的高度CE=3m,CD=1m,试求滑道AC的长.故滑道AC的长度为5m.解:设滑道AC的长度为xm,则AB的长也为xm,AE的长度为(x-1)m.在Rt△ACE中,∠AEC=90°,由勾股定理得AE2+CE2=AC2,即(x-1)2+32=x2,解得x=5.数学思想:实际问题数学问题转化建模例3
如图,在一次夏令营中,小明从营地A出发,沿北偏东53°方向走了400m到达点B,然后再沿北偏西37°方向走了300m到达目的地C.求A、C两点之间的距离.解:如图,过点B作BE∥AD.∴∠DAB=∠ABE=53°.∵37°+∠CBA+∠ABE=180°,∴∠CBA=90°,∴AC2=BC2+AB2=3002+4002=5002,∴AC=500m,即A、C两点间的距离为500m.E方法总结
此类问题解题的关键是将实际问题转化为数学问题;在数学模型(直角三角形)中,应用勾股定理或勾股定理的逆定理解题.当堂练习1.如图是一张直角三角形的纸片,两直角边AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长为()A.4cmB.5cmC.6cmD.10cmB2.有一个高为1.5m,半径是1m的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5m,问这根铁棒有多长?解:设伸入油桶中的长度为xm,则最长时:最短时,x=1.5所以最长是2.5+0.5=3(m).答:这根铁棒的长应在2~3m之间.所以最短是1.5+0.5=2(m).解得:x=2.5梯子的顶端沿墙下滑4m,梯子底端外移8m.解:在Rt△AOB中,在Rt△COD中,3.一个25m长的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为24m,如果梯子的顶端A沿墙下滑4m,那么梯子底端B也外移4m吗?4.我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?DABC解:设水池的水深AC为x尺,则这根芦苇长AD=AB=(x+1)尺,在直角三角形ABC中,BC=5尺由勾股定理得,BC2+AC2=AB2即52+x2=(x+1)225+x2=x2+2x+1,2x=24,∴x=12,x+1=13.答:水池的水深12尺,这根芦苇长13尺.5.为筹备迎接新生晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然后缠绕红色油纸,如图①.已知圆筒的高为108cm,其横截面周长为36cm,如果在表面均匀缠绕油纸4圈,应裁剪多长的油纸?解:如图②,在Rt△ABC中,因为AC=36cm,BC=108÷4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 13-14-Dihydro-15-keto-tetranor-prostaglandin-F1β-生命科学试剂-MCE-3578
- 2025年度智能家居安防装饰家居装修合同
- 二零二五年度同居关系解除并处理共同财产合同
- 2025年度钢琴制作工艺技术研究与应用合同
- 2025年度海鲜池养殖产业链整合承包协议
- 教育创新在展馆空间设计中的体现
- 解读中药药理优化日常养生
- 个人商业贷款保证担保合同
- 中央空调维护合同范本
- 个人经营性贷款借款合同样本
- 2023年北京自然博物馆招考聘用笔试参考题库附答案详解
- 密度计法颗粒分析试验记录(自动和计算)
- 土方转运方案
- (11.3.1)-10.3蒸汽压缩制冷循环
- JJF(纺织)064-2013织物防钻绒性试验仪(摩擦法)校准规范
- GB/T 21797-2008化学品有机磷化合物28天重复剂量的迟发性神经毒性试验
- 2023年湖北成人学位英语考试真题
- 园区保安巡逻岗标准作业规程
- SJG 112-2022 既有建筑幕墙安全性鉴定技术标准高清最新版
- 旅游文本的翻译课件
- 最全新能源材料-锂离子电池材料189张课件
评论
0/150
提交评论