版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省石家庄市康福外国语学校高一数学第二学期期末达标检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆心在轴上的圆经过,两点,则的方程为()A. B.C. D.2.已知甲,乙,丙三人去参加某公司面试,他们被该公司录取的概率分别是,,,且三人录取结果相互之间没有影响,则他们三人中至少有一人被录取的概率为()A. B. C. D.3.已知定义在上的偶函数满足:当时,,若,则的大小关系是()A. B. C. D.4.已知椭圆C:的左右焦点为F1,F2离心率为,过F2的直线l交C与A,B两点,若△AF1B的周长为,则C的方程为()A. B. C. D.5.某快递公司在我市的三个门店,,分别位于一个三角形的三个顶点处,其中门店,与门店都相距,而门店位于门店的北偏东方向上,门店位于门店的北偏西方向上,则门店,间的距离为()A. B. C. D.6.如果直线a平行于平面,则()A.平面内有且只有一直线与a平行B.平面内有无数条直线与a平行C.平面内不存在与a平行的直线D.平面内的任意直线与直线a都平行7.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A. B.C. D.8.的值等于()A. B. C. D.9.两条直线和,,在同一直角坐标系中的图象可能是()A. B.C. D.10.设点M是直线上的一个动点,M的横坐标为,若在圆上存在点N,使得,则的取值范围是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设向量,,______.12.已知某中学高三学生共有800人参加了数学与英语水平测试,现学校决定利用随机数表法从中抽取100人的成绩进行统计,先将800人按001,002,…,800进行编号.如果从第8行第7列的数开始从左向右读,(下面是随机数表的第7行至第9行)844217533157245506887704744767217633502683925316591692753562982150717512867363015807443913263321134278641607825207443815则最先抽取的2个人的编号依次为_____.13.一个圆锥的侧面积为,底面积为,则该圆锥的体积为________.14.已知函数,对于下列说法:①要得到的图象,只需将的图象向左平移个单位长度即可;②的图象关于直线对称:③在内的单调递减区间为;④为奇函数.则上述说法正确的是________(填入所有正确说法的序号).15.已知,则____.16.已知,,,,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.无穷数列满足:为正整数,且对任意正整数,为前项、、、中等于的项的个数.(1)若,求和的值;(2)已知命题存在正整数,使得,判断命题的真假并说明理由;(3)若对任意正整数,都有恒成立,求的值.18.设函数.(1)求函数的单调递减区间;(2)若,求函数的值域.19.在中,、、分别是内角、、的对边,且.(1)求角的大小;(2)若,的面积为,求的周长.20.在海上进行工程建设时,一般需要在工地某处设置警戒水域;现有一海上作业工地记为点,在一个特定时段内,以点为中心的1海里以内海域被设为警戒水域,点正北海里处有一个雷达观测站,某时刻测得一艘匀速直线行驶的船只位于点北偏东且与点相距10海里的位置,经过12分钟又测得该船已行驶到点北偏东且与点相距海里的位置.(1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶.试判断它是否会进入警戒水域(点与船的距离小于1海里即为进入警戒水域),并说明理由.21.某学校为了了解高三文科学生第一学期数学的复习效果.从高三第一学期期末考试成绩中随机抽取50名文科考生的数学成绩,分成6组制成如图所示的频率分布直方图.(1)试利用此频率分布直方图求的值及这50名同学数学成绩的平均数的估计值;(2)该学校为制定下阶段的复习计划,从被抽取的成绩在的同学中选出3位作为代表进行座谈,若已知被抽取的成绩在的同学中男女比例为,求至少有一名女生参加座谈的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
由圆心在轴上设出圆心坐标,设出圆的方程,将,两点坐标代入,即可求得圆心坐标和半径,进而得圆的方程.【题目详解】因为圆心在轴上,设圆心坐标为,半径为设圆的方程为因为圆经过,两点代入可得解方程求得所以圆C的方程为故选:A【题目点拨】本题考查了圆的方程求法,关键是求出圆心和半径,属于基础题.2、B【解题分析】
由题意,可先求得三个人都没有被录取的概率,接下来求至少有一人被录取的概率,利用对立事件的概率公式,求得结果.【题目详解】甲、乙、丙三人都没有被录取的概率为,所以三人中至少有一人被录取的概率为,故选B.【题目点拨】该题考查的是有关概率的求解问题,关键是掌握对立事件的概率加法公式,求得结果.3、C【解题分析】
根据函数的奇偶性将等价变形为,再根据函数在上单调性判断函数值的大小关系,从而得出正确选项.【题目详解】解因为函数为偶函数,故,因为,,所以,因为函数在上单调增,故,故选C.【题目点拨】本题考查了函数单调性与奇偶性的运用,解题的关键是要能根据奇偶性将函数值进行转化.4、A【解题分析】
若△AF1B的周长为4,由椭圆的定义可知,,,,,所以方程为,故选A.考点:椭圆方程及性质5、C【解题分析】
根据题意,作出图形,结合图形利用正弦定理,即可求解,得到答案.【题目详解】如图所示,依题意知,,,由正弦定理得:,则.故选C.【题目点拨】本题主要考查了三角形的实际应用问题,其中解答中根据题意作出图形,合理使用正弦定理求解是解答的关键,着重考查了推理与运算能力,属于基础题.6、B【解题分析】
根据线面平行的性质解答本题.【题目详解】根据线面平行的性质定理,已知直线平面.
对于A,根据线面平行的性质定理,只要过直线a的平面与平面相交得到的交线,都与直线a平行;所以平面内有无数条直线与a平行;故A错误;
对于B,只要过直线a的平面与平面相交得到的交线,都与直线a平行;所以平面内有无数条直线与a平行;故B正确;
对于C,根据线面平行的性质,过直线a的平面与平面相交得到的交线,则直线,所以C错误;
对于D,根据线面平行的性质,过直线a的平面与平面相交得到的交线,则直线,则在平面内与直线相交的直线与a不平行,所以D错误;
故选:B.【题目点拨】本题考查了线面平行的性质定理;如果直线与平面平行,那么过直线的平面与已知平面相交,直线与交线平行.7、B【解题分析】试题分析:从甲乙等名学生中随机选出人,基本事件的总数为,甲被选中包含的基本事件的个数,所以甲被选中的概率,故选B.考点:古典概型及其概率的计算.8、C【解题分析】
根据特殊角的三角函数值,得到答案.【题目详解】.故选C项.【题目点拨】本题考查特殊角的三角函数值,属于简单题.9、A【解题分析】
由方程得出直线的截距,逐个选项验证即可.【题目详解】由截距式方程可得直线的横、纵截距分别为,直线的横、纵截距分别为选项A,由的图象可得,可得直线的截距均为正数,故A正确;选项B,只有当时,才有直线平行,故B错误;选项C,只有当时,才有直线的纵截距相等,故C错误;选项D,由的图象可得,可得直线的横截距为正数,纵截距为负数,由图像不对应,故D错误;故选:A【题目点拨】本题考查了直线的截距式方程,需理解截距的定义,属于基础题.10、D【解题分析】
由题意画出图形,根据直线与圆的位置关系可得相切,设切点为P,数形结合找出M点满足|MP|≤|OP|的范围,从而得到答案.【题目详解】由题意可知直线与圆相切,如图,设直线x+y−2=0与圆相切于点P,要使在圆上存在点N,使得,使得最大值大于或等于时一定存在点N,使得,而当MN与圆相切时,此时|MP|取得最大值,则有|MP|≤|OP|才能满足题意,图中只有在M1、M2之间才可满足,∴的取值范围是[0,2].故选:D.【题目点拨】本题考查直线与圆的位置关系,根据数形结合思想,画图进行分析可得,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
利用向量夹角的坐标公式即可计算.【题目详解】.【题目点拨】本题主要考查了向量夹角公式的坐标运算,属于容易题.12、165;535【解题分析】
按照题设要求读取随机数表得到结果,注意不符合要求的数据要舍去.【题目详解】读取的第一个数:满足;读取的第二个数:不满足;读取的第三个数:不满足;读取的第三个数:满足.【题目点拨】随机数表的读取规则:从指定位置开始,按照指定位数读取,一次读取一组,若读取的数不符合规定(不在范围之内),则舍去,重新读取.13、【解题分析】
设圆锥的底面半径为,母线长为,由圆锥的侧面积、圆面积公式列出方程组求解,代入圆锥的体积公式求解.【题目详解】设圆锥的底面半径为,母线长为,其侧面积为,底面积为,则,解得,,∴高===,∴==.故答案为:.【题目点拨】本题考查圆锥的体积的求法,考查圆锥的侧面积、底面积、体积公式等基础知识,考查运算求解能力,属于基础题.14、②④【解题分析】
结合三角函数的图象与性质对四个结论逐个分析即可得出答案.【题目详解】①要得到的图象,应将的图象向左平移个单位长度,所以①错误;②令,,解得,,所以直线是的一条对称轴,故②正确;③令,,解得,,因为,所以在定义域内的单调递减区间为和,所以③错误;④是奇函数,所以该说法正确.【题目点拨】本题考查了正弦型函数的对称轴、单调性、奇偶性与平移变换,考查了学生对的图象与性质的掌握,属于中档题.15、【解题分析】
由于,则,然后将代入中,化简即可得结果.【题目详解】,,,故答案为.【题目点拨】本题考查了同角三角函数的关系,属于基础题.同角三角函数之间的关系包含平方关系与商的关系,平方关系是正弦与余弦值之间的转换,商的关系是正余弦与正切之间的转换.16、【解题分析】
根据已知角的范围分别求出,,利用整体代换即可求解.【题目详解】,,,所以,,,,所以,=故答案为:【题目点拨】此题考查三角函数给值求值的问题,关键在于弄清角的范围,准确得出三角函数值,对所求的角进行合理变形,用已知角表示未知角.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)真命题,证明见解析;(3).【解题分析】
(1)根据题意直接写出、、的值,可得出结果;(2)分和两种情况讨论,找出使得等式成立的正整数,可得知命题为真命题;(3)先证明出“”是“存在,当时,恒有成立”的充要条件,由此可得出,然后利用定义得出,由此可得出的值.【题目详解】(1)根据题意知,对任意正整数,为前项、、、中等于的项的个数,因此,,,;(2)真命题,证明如下:①当时,则,,,此时,当时,;②当时,设,则,,,此时,当时,.综上所述,命题为真命题;(3)先证明:“”是“存在,当时,恒有成立”的充要条件.假设存在,使得“存在,当时,恒有成立”.则数列的前项为,,,,,,后面的项顺次为,,,,故对任意的,,对任意的,取,其中表示不超过的最大整数,则,令,则,此时,有,这与矛盾,故若存在,当时,恒有成立,必有;从而得证.另外:当时,数列为,故,则.【题目点拨】本题考查数列知识的应用,涉及到命题真假的判断,同时也考查了数列新定义问题,解题时要充分从题中数列的定义出发,充分利用分类讨论思想,综合性强,属于难题.18、(1);(2).【解题分析】分析:(1)由二倍角公式将表达式化一得到,,令,得到单调区间;(2)时,,根据第一问的表达式得到值域.详解:(1)由令得:所以,函数的单调减区间为(2)当时,所以,函数的值域是:.点睛:本题求最值利用三角函数辅助角公式将函数化为的形式,利用三角函数的图像特点得到函数的值域.19、(1)(2)【解题分析】
(1)由正弦定理,两角和的正弦函数公式化简已知等式可得,由,可求,结合范围,可求.(2)利用三角形的面积公式可求,进而根据余弦定理可得,即可计算得解的周长的值.【题目详解】解:(1)∵,∴由正弦定理可得:,即,∵,∴,∵,∴.(2)∵,,的面积为,,∴,∴由余弦定理可得:,∴解得:,∴的周长.【题目点拨】本题主要考查了正弦定理,两角和的正弦函数公式,三角形的面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.20、(1)海里/小时;(2)该船不改变航行方向则会进入警戒水域,理由见解析.【解题分析】
(1)建立直角坐标系,首先求出位置与位置的距离,然后除以经过的时间即可求出船的航行速度;(2)求出位置与位置所在直线方程,求出位置
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年抗倍特板项目规划申请报告
- 2024-2030年中国盐化工行业供需趋势及投资可行性分析报告
- 2024-2030年中国白菜行业产量预测及未来发展潜力分析报告
- 2024-2030年中国球墨铸铁管市场运营动态与盈利前景预测报告
- 2024-2030年中国物流台车行业营销策略分析及投资规划研究报告
- 2024年临床路径信息系统项目规划申请报告
- 2024-2030年中国烘焙油脂行业竞争策略及投资盈利预测报告
- 2024年杆菌肽类产品项目规划申请报告模板
- 2024-2030年中国浅层地热能行业发展现状投资规划分析报告
- 2024-2030年中国洗洁精行业销售模式及发展战略建议报告
- 度无锡市高技能人才培养基地工作自评报告
- 通风队岗位说明书
- 中小学教师德能勤绩廉考核表
- 混合痔优化中医护理方案
- Chapter 11 微生物的分化和发育
- 关于我市卫生监督体系建设情况的调研报告
- A760(761)E自动变速器ppt课件
- 建设工程施工现场项目管理人员解锁申请表
- 防呆法(防错法)Poka-Yoke
- 田径运动会径赛裁判法PPT课件
- 医学影像技术试题
评论
0/150
提交评论