版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届新疆维吾尔自治区五大名校高一数学第二学期期末达标测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,内角A,B,C的对边分别为a,b,c,若a,b,c依次成等差数列,,,依次成等比数列,则的形状为()A.等边三角形 B.等腰直角三角形C.钝角三角形 D.直角边不相等的直角三角形2.在正六边形ABCDEF中,点P为CE上的任意一点,若,则()A.2 B. C.3 D.不确定3.已知的内角的对边分别为,若,则()A. B. C. D.4.抽查10件产品,设“至少抽到2件次品”为事件,则的对立事件是()A.至多抽到2件次品 B.至多抽到2件正品C.至少抽到2件正品 D.至多抽到一件次品5.为了得到函数y=sin(x+A.向左平行移动π3B.向右平行移动π3C.向上平行移动π3D.向下平行移动π36.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是().A.收入最高值与收入最低值的比是B.结余最高的月份是月份C.与月份的收入的变化率与至月份的收入的变化率相同D.前个月的平均收入为万元7.过两点A(4,y),B(2,-3)的直线的倾斜角是135°,则y等于()A.1 B.5 C.-1 D.-58.已知等差数列的前项和为,若,,则的值为()A. B.0 C. D.1829.已知点,,则直线的斜率是()A. B. C.5 D.110.已知数列的前项和为,且,,则()A.127 B.129 C.255 D.257二、填空题:本大题共6小题,每小题5分,共30分。11.将角度化为弧度:________.12.已知函数的最小正周期为,且的图象过点,则方程所有解的和为________.13.已知公式,,借助这个公式,我们可以求函数的值域,则该函数的值域是______.14.函数f(x)=coscos的最小正周期为________.15.若圆:与圆:相交于,两点,且两圆在点处的切线互相垂直,则公共弦的长度是______.16.设是定义在上以2为周期的偶函数,已知,,则函数在上的解析式是三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设公差不为0的等差数列中,,且构成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)若数列的前项和满足:,求数列的前项和.18.如图,在四边形中,,,.(1)若,求的面积;(2)若,,求的长.19.如图,已知四棱锥,底面为菱形,,,平面,分别是的中点.(1)证明:;(2)若为上的动点,与平面所成最大角的正切值为,求二面角的余弦值.20.在数列中,,.(1)求证:数列是等差数列;(2)求数列的前项和.21.某校名学生的数学期中考试成绩频率分布直方图如图所示,其中成绩分组区间是,,,,,.求图中的值;根据频率分布直方图,估计这名学生的平均分;若这名学生的数学成绩中,某些分数段的人数与英语成绩相应分数段的人数之比如表所示,求英语成绩在的人数.分数段:51:21:1
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
根据a,b,c依次成等差数列,,,依次成等比数列,利用等差、等比中项的性质可知,根据基本不等式求得a=c,判断出a=b=c,推出结果.【题目详解】由a,b,c依次成等差数列,有2b=a+c(1)由,,成等比数列,有(2),由(1)(2)得,又根据,当a=c时等号成立,∴可得a=c,∴,综上可得a=b=c,所以△ABC为等边三角形.故选:A.【题目点拨】本题考查三角形的形状判断,结合等差、等比数列性质及基本不等式关系可得三边关系,从而求解,考查综合分析能力,属于中等题.2、C【解题分析】
延长交于点,延长交于点,可推出,,所以有,然后利用平面向量共线的推论即可求出【题目详解】如图,延长交于点,延长交于点设正六边形ABCDEF的边长为则在中有,,所以,所以有,同理可得因为所以因为三点共线,所以有,即故选:C【题目点拨】遇到三点共线时,要联想到平面向量共线的推论:三点共线,若,则.3、B【解题分析】
已知两角及一对边,求另一边,我们只需利用正弦定理.【题目详解】在三角形中由正弦定理公式:,所以选择B【题目点拨】本题直接属于正弦定理的直接考查,代入公式就能求解.属于简单题.4、D【解题分析】
由对立事件的概念可知,直接写出其对立事件即可.【题目详解】“至少抽到2件次品”的对立事件为“至多抽到1件次品”,故选D【题目点拨】本题主要考查对立事件的概念,熟记对立事件的概念即可求解,属于基础题型.5、A【解题分析】试题分析:为得到函数y=sin(x+π3)【考点】三角函数图象的平移【名师点睛】本题考查三角函数图象的平移,函数y=f(x)的图象向右平移a个单位长度得y=f(x-a)的图象,而函数y=f(x)的图象向上平移a个单位长度得y=f(x)+a的图象.左、右平移涉及的是x的变化,上、下平移涉及的是函数值f(x)的变化.6、D【解题分析】由图可知,收入最高值为万元,收入最低值为万元,其比是,故项正确;结余最高为月份,为,故项正确;至月份的收入的变化率为至月份的收入的变化率相同,故项正确;前个月的平均收入为万元,故项错误.综上,故选.7、D【解题分析】∵过两点A(4,y),B(2,-3)的直线的倾斜角是135°,∴,解得。选D。8、B【解题分析】
由,可得,可得的值.【题目详解】解:已知等差数列中,可得,即:,,故选B【题目点拨】本题主要考查等差数列的性质,从数列自身的特点入手是解决问题的关键.9、D【解题分析】
根据直线的斜率公式,准确计算,即可求解,得到答案.【题目详解】由题意,根据直线的斜率公式,可得直线的斜率,故选D.【题目点拨】本题主要考查了直线的斜率公式的应用,其中解答中熟记直线的斜率公式,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.10、C【解题分析】
利用迭代关系,得到另一等式,相减求出,判断数列是否为等比数列,利用等比数列求和公式可得.【题目详解】因为,,所以,相减得,,,又,所以,,所以数列是等比数列,所以,故选C.【题目点拨】本题考查等比数列的求和,数列通项公式的求法,考查计算求解能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
根据角度和弧度的互化公式求解即可.【题目详解】.故答案为:.【题目点拨】本题考查角度和弧度的互化公式,属于基础题.12、【解题分析】
由周期求出,由图象的所过点的坐标求得,【题目详解】由题意,又,且,∴,,由得或,又,,∴或,或,两根之和为.故答案为:.【题目点拨】本题考查求三角函数的解析式,考查解三角方程.掌握正切函数的性质是解题关键.13、【解题分析】
根据题意,可令,结合,再进行整体代换即可求解【题目详解】令,则,,,则,,,则函数值域为故答案为:【题目点拨】本题考查3倍角公式的使用,函数的转化思想,属于中档题14、2【解题分析】f(x)=coscos=cos·sin=sinπx,最小正周期为T==215、【解题分析】
根据两圆在点处的切线互相垂直,得出是直角三角形,求出,然后两圆相减求出公共弦的直线方程,运用点到直线的距离公式求出圆心到公共弦的距离,进而求出公共弦长.【题目详解】由题意,圆圆心坐标,半径,圆圆心坐标,半径,因为两圆相交于点,且两圆在点处的切线互相垂直,所以是直角三角形,,所以,由两点间距离公式,,所以,解得,所以圆:,两圆方程相减,得,即,所以公共弦:,圆心到公共弦的距离,故公共弦长故答案为:【题目点拨】本题主要考查两圆公共弦的方程、圆弦长的求法和点到直线的距离公式,考查学生的分析能力,属于基础题.16、【解题分析】试题分析:根据题意,由于是定义在上以2为周期的偶函数,那么当,,可知当x,,那么利用周期性可知,在上的解析式就是将x,的图像向右平移2个单位得到的,因此可知,答案为.考点:函数奇偶性、周期性的运用点评:解决此类问题的关键是熟练掌握函数的有关性质,即周期性,奇偶性,单调性等有关性质.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解题分析】
(Ⅰ)根据条件列方程解得公差,再根据等差数列通项公式得结果,(Ⅱ)先根据和项求通项,再根据错位相减法求和.【题目详解】(Ⅰ)因为构成等比数列,所以(0舍去)所以(Ⅱ)当时,当时,,相减得所以即【题目点拨】本题考查等差数列通项公式以及错位相减法求和,考查基本分析求解能力,属中档题.18、(1);(2).【解题分析】
(1)由余弦定理求出BC,由此能求出△ABC的面积.(2)设∠BAC=θ,AC=x,由正弦定理得从而,在中,由正弦定理得,建立关于θ的方程,由此利用正弦定理能求出sin∠CAD.再利用余弦定理可得结果.【题目详解】(1)因为,,,所以,即,所以.所以.(2)设,,则,在中,由正弦定理得:,所以;在中,,所以.即,化简得:,所以,所以,,所以在中,.即,解得或(舍).【题目点拨】本题考查正、余弦定理在解三角形中的应用,考查了引入角的技巧方法,考查运算求解能力,考查函数与方程思想,是中档题.19、(1)见解析;(2)【解题分析】
(1)证明,利用平面即可证得,问题得证.(2)过点作于点,过点作于点,连接.当与垂直时,与平面所成最大角,利用该最大角的正切值为即可求得,证明就是二面角的一个平面角,解即可.【题目详解】(1)因为底面为菱形,所以为等边三角形,又为中点所以,又所以因为平面,平面所以,又所以平面(2)过点作于点,过点作于点,连接当与垂直时,与平面所成最大角.由(1)得,此时.所以就是与平面所成的角.在中,由题意可得:,又所以.设,在中由等面积法得:解得:,所以因为平面,平面所以平面平面,又平面平面,,平面所以平面,又平面所以,又,所以平面,所以所以就是二面角的一个平面角因为为的中点,且所以,又所以在中,求得:,,由可得:,即:,解得:所以所以所以二面角的余弦值为【题目点拨】本题主要考查了线面垂直的证明,考查了转化能力,还考查了线面角知识,考查了二面角的平面角作法,考查空间思维能力及解三角形,考查了方程思想及计算能力,属于难题.20、(1)证明见解析.(2).【解题分析】
(1)根据数列通项公式的特征,我们对,两边同时除以,得到,利用等差数列的定义,就可以证明出数列是等差数列;(2)求出数列的通项公式,利用裂项相消法,求出数列的前n项和.【题目详解】(1)的两边同除以,得,又,所以数列是首项为4,公差为2的等差数列.(2)由(1)得,即,故,所以【题目点拨】本题考查了证明等差数列的方法以及用裂项相消法求数列前和.已知,都是等差数列,那么数列的前和就可以用裂项相消法来求解.21、(1)(2)平均数为(3)人【解题分析】
(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国地产绿化商业计划书
- 2024-2030年中国咸菜市场发展前景调研与投资策略分析报告
- 2024-2030年中国印花热熔胶融资商业计划书
- 2024年体育用品销售租赁合同
- 满洲里俄语职业学院《STEM课程教学与微课制作》2023-2024学年第一学期期末试卷
- 2024年儿童个性化教育服务聘请教师劳动合同模板3篇
- 2024年房屋中介居间协议2篇
- 漯河医学高等专科学校《画法几何与土建制图》2023-2024学年第一学期期末试卷
- 2025年铜川货运从业资格证模拟考试下载什么软件
- 2024年标准格式个人等额本息贷款合同版B版
- 当前台海局势分析课件
- 五金采购工作总结
- 苏教版三年级上册解决问题的策略应用题100题及答案
- 质量管理中的流程改进与优化
- 成长赛道-模板参考
- 室外晾衣棚施工方案
- 儿童健康管理服务总结分析报告
- 殡葬行业的风险分析
- 通信工程冬季施工安全培训
- 痛风病科普讲座课件
- 工作岗位风险评估报告
评论
0/150
提交评论