黑龙江省佳木斯市汤原县高级中学2024届数学高一第二学期期末质量检测试题含解析_第1页
黑龙江省佳木斯市汤原县高级中学2024届数学高一第二学期期末质量检测试题含解析_第2页
黑龙江省佳木斯市汤原县高级中学2024届数学高一第二学期期末质量检测试题含解析_第3页
黑龙江省佳木斯市汤原县高级中学2024届数学高一第二学期期末质量检测试题含解析_第4页
黑龙江省佳木斯市汤原县高级中学2024届数学高一第二学期期末质量检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省佳木斯市汤原县高级中学2024届数学高一第二学期期末质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在投资生产产品时,每生产需要资金200万,需场地,可获得300万;投资生产产品时,每生产需要资金300万,需场地,可获得200万,现某单位可使用资金1400万,场地,则投资这两种产品,最大可获利()A.1350万 B.1475万 C.1800万 D.2100万2.已知等比数列的前项和为,,,则()A.31 B.15 C.8 D.73.函数的最小正周期是()A. B. C. D.4.已知,则比多了几项()A.1 B. C. D.5.在中,边,,分别是角,,的对边,且满足,若,则的值为A. B. C. D.6.中国数学家刘微在《九章算术注》中提出“割圆”之说:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣.”意思是“圆内接正多边形的边数无限增加的时候,它的周长的极限是圆的周长,它的面积的极限是圆的面积”.如图,若在圆内任取一点,则此点取自其内接正六边形的边界及其内部的概率为()A. B. C. D.7.若线性方程组的增广矩阵是5b1102bA.1 B.2 C.3 D.48.某部门为了了解用电量y(单位:度)与气温x(单位:°C)之间的关系,随机统计了某3天的用电量与当天气温如表所示.由表中数据得回归直线方程y=-0.8x+a,则摄氏温度(°C)4611用电量度数1074A.12.6 B.13.2 C.11.8 D.12.89.在中,角A,B,C所对的边分别为a,b,c,若,,则的值为()A. B. C. D.10.设集合,集合,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.中,,则A的取值范围为______.12.已知数列的前n项和为,,且(),记(),若对恒成立,则的最小值为__.13.给出下列四个命题:①在中,若,则;②已知点,则函数的图象上存在一点,使得;③函数是周期函数,且周期与有关,与无关;④设方程的解是,方程的解是,则.其中真命题的序号是______.(把你认为是真命题的序号都填上)14.已知向量、满足,,且,则与的夹角为________.15.等差数列,,存在正整数,使得,,若集合有4个不同元素,则的可能取值有______个.16.已知函数的部分图象如图所示,则的值为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某中学的高二(1)班男同学有45名,女同学有15名,老师按照分层抽样的方法组建了一个4人的课外兴趣小组.(1)求课外兴趣小组中男、女同学的人数;(2)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出1名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实验,求选出的两名同学中恰有一名女同学的概率;(3)试验结束后,第一次做试验的同学得到的试验数据为68,70,71,72,74,第二次做试验的同学得到的试验数据为69,70,70,72,74,请问哪位同学的实验更稳定?并说明理由.18.在中,内角所对的边分别为.已知,.(I)求的值;(II)求的值.19.已知分别是锐角三个内角的对边,且,且.(Ⅰ)求的值;(Ⅱ)求面积的最大值;20.设函数,其中,.(1)求的周期及单调递减区间;(2)若关于的不等式在上有解,求实数的取值范围.21.已知时不等式恒成立,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

设生产产品x百吨,生产产品百吨,利润为百万元,先分析题意,找出相关量之间的不等关系,即满足的约束条件,由约束条件画出可行域;要求应作怎样的组合投资,可使获利最大,即求可行域中的最优解,在线性规划的解答题中建议使用直线平移法求出最优解,即将目标函数看成是一条直线,分析目标函数与直线截距的关系,进而求出最优解.【题目详解】设生产产品百吨,生产产品百吨,利润为百万元则约束条件为:,作出不等式组所表示的平面区域:目标函数为.由解得.使目标函数为化为要使得最大,即需要直线在轴的截距最大即可.由图可知当直线过点时截距最大.此时应作生产产品3.25百吨,生产产品2.5百吨的组合投资,可使获利最大.

故选:B.【题目点拨】在解决线性规划的应用题时,其步骤为:①分析题目中相关量的关系,列出不等式组,即约束条件⇒②由约束条件画出可行域⇒③分析目标函数Z与直线截距之间的关系⇒④使用平移直线法求出最优解⇒⑤还原到现实问题中.属于中档题.2、B【解题分析】

利用基本元的思想,将已知条件转化为的形式,由此求得,进而求得.【题目详解】由于数列是等比数列,故,由于,故解得,所以.故选:B.【题目点拨】本小题主要考查等比数列通项公式的基本量的计算,考查等比数列前项和公式,属于基础题.3、C【解题分析】

将函数化为,再根据周期公式可得答案.【题目详解】因为=,所以最小正周期.故选:C【题目点拨】本题考查了两角和的正弦公式的逆用,考查了正弦型函数的周期公式,属于基础题.4、D【解题分析】

由写出,比较两个等式得多了几项.【题目详解】由题意,则,那么:,又比多了项.故选:D.【题目点拨】本题考查对函数的理解和带值计算问题,属于基础题.5、A【解题分析】

利用正弦定理把题设等式中的边换成角的正弦,进而利用两角和公式化简整理可得的值,由可得的值【题目详解】在中,由正弦定理可得化为:即在中,,故,可得,即故选【题目点拨】本题以三角形为载体,主要考查了正弦定理,向量的数量积的运用,考查了两角和公式,考查了分析问题和解决问题的能力,属于中档题。6、C【解题分析】

设出圆的半径,表示出圆的面积和圆内接正六边形的面积,即可由几何概型概率计算公式得解.【题目详解】设圆的半径为则圆的面积为圆内接正六边形的面积为由几何概型概率可知,在圆内任取一点,则此点取自其内接正六边形的边界及其内部的概率为故选:C【题目点拨】本题考查了圆的面积及圆内接正六边形的面积求法,几何概型概率的计算公式,属于基础题.7、C【解题分析】

由题意得5×3421+【题目详解】由题意得5×3421+解得b1则b2【题目点拨】本题主要考查了线性方程组的解法,以及增广矩阵的概念,考查运算能力,属于中档题.8、A【解题分析】

计算数据中心点,代入回归方程得到答案.【题目详解】x=4+6+113=7,代入回归方程y7=-0.8×7+a故答案选A【题目点拨】本题考查了回归方程,掌握回归方程过中心点是解题的关键.9、D【解题分析】

由正弦定理及余弦定理可得,,然后求解即可.【题目详解】解:由可得,则,①又,所以,即,所以②由①②可得:,由余弦定理可得,故选:D.【题目点拨】本题考查了正弦定理及余弦定理的综合应用,重点考查了两角和的正弦公式,属中档题.10、B【解题分析】

已知集合A,B,取交集即可得到答案.【题目详解】集合,集合,则故选B【题目点拨】本题考查集合的交集运算,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

由正弦定理将sin2A≤sin2B+sin2C-sinBsinC变为,然后用余弦定理推论可求,进而根据余弦函数的图像性质可求得角A的取值范围.【题目详解】因为sin2A≤sin2B+sin2C-sinBsinC,所以,即.所以,因为,所以.【题目点拨】在三角形中,已知边和角或边、角关系,求角或边时,注意正弦、余弦定理的运用.条件只有角的正弦时,可用正弦定理的推论,将角化为边.12、【解题分析】

,即为首项为,公差为的等差数列,,,,由得,因为或时,有最大值,,即的最小值为,故答案为.【方法点晴】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,掌握一些常见的裂项技巧:①;②;③;④;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.13、①③【解题分析】

①利用三角形的内角和定理以及正弦函数的单调性进行判断;②根据余弦函数的有界性可进行判断;③利用周期函数的定义,结合余弦函数的周期性进行判断;④根据互为反函数图象的对称性进行判断.【题目详解】①在中,若,则,则,由于正弦函数在区间上为增函数,所以,故命题①正确;②已知点,则函数,所以该函数图象上不存在一点,使得,故命题②错误;③函数的是周期函数,当时,,该函数的周期为.当时,,该函数的周期为.所以,函数的周期与有关,与无关,命题③正确;④设方程的解是,方程的解是,由,可得,由,可得,则可视为函数与直线交点的横坐标,可视为函数与直线交点的横坐标,如下图所示:联立,得,可得点,由于函数的图象与函数的图象关于直线对称,则直线与函数和函数图象的两个交点关于点对称,所以,命题④错误.故答案为:①③.【题目点拨】本题考查三角函数的周期、正弦函数单调性的应用、互为反函数图象的对称性的应用以及余弦函数有界性的应用,考查分析问题和解决问题的能力,属于中等题.14、【解题分析】

直接应用数量积的运算,求出与的夹角.【题目详解】设向量、的夹角为;∵,∴,∵,∴.故答案为:.【题目点拨】本题考查向量的夹角计算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,属于基础题.15、4【解题分析】

由题意得为周期数列,集合有4个不同元素,得,在分别对取值讨论即可.【题目详解】设等差数列的首项为,公差为,则,,由题意,存在正整数,使得,又集合有4个不同元素,得,当时,,即,,或(舍),,取,则,在单位圆上的4个等分点可取到4个不同的正弦值,即集合可取4个不同元素;当,,即,,在单位圆上的5个等分点不可能取到4个不同的正弦值,故舍去;同理可得:当,,,集合可取4个不同元素;当时,,单位圆上至少9个等分点取4个不同的正弦值,必有至少3个相等的正弦值,不符合集合的元素互异性,故不可取应舍去.故答案:4.【题目点拨】本题考查等差数列的通项公式、集合元素的性质以及三角函数的周期性,理解分析问题能力,属于难题.16、【解题分析】

根据图像可得,根据0所在位置,处于函数的单调减区间,即可得解.【题目详解】由图可得:,或由于0在函数的单调减区间内,所以.故答案为:【题目点拨】此题考查根据三角函数的图象求参数的取值,常用代入法求解,判定初相的取值时,根据图象结合单调性取值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)男、女同学的人数分别为3人,1人;(2);(3)第二位同学的实验更稳定,理由见解析【解题分析】

(1)设有名男同学,利用抽样比列方程即可得解(2)列出基本事件总数为12,其中恰有一名女同学的有6种,利用古典概型概率公式计算即可(3)计算出两位同学的实验数据的平均数和方差,问题得解【题目详解】(1)设有名男同学,则,∴,∴男、女同学的人数分别为3人,1人(2)把3名男同学和1名女同学记为,则选取两名同学的基本事件有,,,,,,,,,,,共12种,其中恰有一名女同学的有6种,∴选出的两名同学中恰有一名女同学的概率为(3),,因,所以第二位同学的实验更稳定.【题目点拨】本题主要考查了分层抽样比例关系及古典概型概率计算公式,还考查了样本数据的平均数及方差计算,考查方差与稳定性的关系,属于中档题18、(Ⅰ)(Ⅱ)【解题分析】试题分析:利用正弦定理“角转边”得出边的关系,再根据余弦定理求出,进而得到,由转化为,求出,进而求出,从而求出的三角函数值,利用两角差的正弦公式求出结果.试题解析:(Ⅰ)解:由,及,得.由,及余弦定理,得.(Ⅱ)解:由(Ⅰ),可得,代入,得.由(Ⅰ)知,A为钝角,所以.于是,,故.考点:正弦定理、余弦定理、解三角形【名师点睛】利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值.利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.19、(Ⅰ);(Ⅱ).【解题分析】试题分析:(Ⅰ)利用正弦定理将角化为边得,利用余弦定理可得;(Ⅱ)由及基本不等式可得,故而可得面积的最大值.试题解析:(Ⅰ)因为,由正弦定理有,既有,由余弦定理得,.(Ⅱ),即,当且仅当时等号成立,当时,,所以的最大值为.20、(1),;(2)【解题分析】

(1)利用坐标形式下向量的数量积运算以及二倍角公式、辅助角公式将化简为的形式,根据周期计算公式以及单调性求解公式即可得到结果;(2)分析在的值域,根据能成立的思想得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论