四川省成都市嘉祥教育集团2024届高一数学第二学期期末达标检测模拟试题含解析_第1页
四川省成都市嘉祥教育集团2024届高一数学第二学期期末达标检测模拟试题含解析_第2页
四川省成都市嘉祥教育集团2024届高一数学第二学期期末达标检测模拟试题含解析_第3页
四川省成都市嘉祥教育集团2024届高一数学第二学期期末达标检测模拟试题含解析_第4页
四川省成都市嘉祥教育集团2024届高一数学第二学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省成都市嘉祥教育集团2024届高一数学第二学期期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角的终边经过点,则A. B. C. D.2.已知数列,对于任意的正整数,,设表示数列的前项和.下列关于的结论,正确的是()A. B.C. D.以上结论都不对3.已知向量,,,则与的夹角为()A. B. C. D.4.已知正三角形ABC边长为2,D是BC的中点,点E满足,则()A. B. C. D.-15.已知1,a,b,c,5五个数成等比数列,则b的值为()A. B. C. D.36.若直线与直线平行,则的值为A. B. C. D.7.在如图的正方体中,M、N分别为棱BC和棱的中点,则异面直线AC和MN所成的角为()A. B. C. D.8.已知是不同的直线,是不同的平面,则下列说法正确的是()A.若,则 B.若,则C.若,则 D.若,则9.边长为的正方形中,点是的中点,点是的中点,将分别沿折起,使两点重合于,则直线与平面所成角的正弦值为()A. B. C. D.10.将函数y=sin2x的图象向右平移A.在区间[-πB.在区间[5πC.在区间[-πD.在区间[π二、填空题:本大题共6小题,每小题5分,共30分。11.如图是一正方体的表面展开图.、、都是所在棱的中点.则在原正方体中:①与异面;②平面;③平面平面;④与平面形成的线面角的正弦值是;⑤二面角的余弦值为.其中真命题的序号是______.12.已知,是第三象限角,则.13.已知平面向量,若,则________14.已知,则________.15.数列满足:,,则______.16.在ΔABC中,a比c长4,b比c长2,且最大角的余弦值是-12,则三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.等差数列的各项均为正数,,的前项和为,为等比数列,,且.(1)求与;(2)求数列的前项和.18.已知数列的前n项和为,,,.(1)求证:数列是等差数列;(2)令,数列的前n项和为,求证:.19.已知是定义域为R的奇函数,当时,.Ⅰ求函数的单调递增区间;Ⅱ,函数零点的个数为,求函数的解析式.20.已知函数.(1)求的单调递增区间;(2)求在区间上的最值.21.下表是某地一家超市在2018年一月份某一周内周2到周6的时间与每天获得的利润(单位:万元)的有关数据.星期星期2星期3星期4星期5星期6利润23569(1)根据上表提供的数据,用最小二乘法求线性回归直线方程;(2)估计星期日获得的利润为多少万元.参考公式:

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

根据三角函数的定义,求出,即可得到的值.【题目详解】因为,,所以.故选:A.【题目点拨】本题主要考查已知角终边上一点,利用三角函数定义求三角函数值,属于基础题.2、B【解题分析】

根据题意,结合等比数列的求和公式,先得到当时,,再由极限的运算法则,即可得出结果.【题目详解】因为数列,对于任意的正整数,,表示数列的前项和,所以,,,...…,所以当时,,因此.故选:B【题目点拨】本题主要考查数列的极限,熟记等比数列的求和公式,以及极限的运算法则即可,属于常考题型.3、D【解题分析】

直接利用向量的数量积转化求解向量的夹角即可.【题目详解】因为,所以与的夹角为.故选:D.【题目点拨】本题主要考查向量的夹角的运算,以及运用向量的数量积运算和向量的模.4、C【解题分析】

化简,分别计算,,代入得到答案.【题目详解】正三角形ABC边长为2,D是BC的中点,点E满足故答案选C【题目点拨】本题考查了向量的计算,将是解题的关键,也可以建立直角坐标系解得答案.5、A【解题分析】

根据等比数列奇数项也成等比数列,求解.【题目详解】因为1,a,b,c,5五个数成等比数列,所以也成等比数列,等比数列奇数项的符号一致,,.故选A.【题目点拨】本题考查了等比数列的基本性质,属于简单题型,但需注意这个隐含条件.6、C【解题分析】试题分析:由两直线平行可知系数满足考点:两直线平行的判定7、C【解题分析】

将平移到一起,根据等边三角形的性质判断出两条异面直线所成角的大小.【题目详解】连接如下图所示,由于分别是棱和棱的中点,故,根据正方体的性质可知,所以是异面直线所成的角,而三角形为等边三角形,故.故选C.【题目点拨】本小题主要考查空间异面直线所成角的大小的求法,考查空间想象能力,属于基础题.8、D【解题分析】

由线面平行的判定定理即可判断A;由线面垂直的判定定理可判断B;由面面垂直的性质可判断C;由空间中垂直于同一条直线的两平面平行可判断D.【题目详解】对于A选项,加上条件“”结论才成立;对于B选项,加上条件“直线和相交”结论才成立;对于C选项,加上条件“”结论才成立.故选:D【题目点拨】本题考查空间直线与平面的位置关系,涉及线面平行的判定、线面垂直的判定、面面垂直的性质,属于基础题.9、D【解题分析】

在正方形中连接,交于点,根据正方形的性质,在折叠图中平面,得到,从而平面,面平面,则是在平面上的射影,找到直线与平面所所成的角.然后在直角三角中求解.【题目详解】如图所示:在正方形中连接,交于点,在折叠图,连接,因为,所以平面,所以,又因为,所以平面,又因为平面,所以平面,则是在平面上的射影,所以即为所求.因为故选:D【题目点拨】本题主要考查了折叠图问题,还考查了推理论证和空间想象的能力,属于中档题.10、A【解题分析】

函数y=sin2x的图象向右平移y=sin2kπ-π单调递减区间:2kπ+π2≤2x-π3【题目详解】本题考查了正弦型函数图象的平移变换以及求正弦型函数的单调区间.二、填空题:本大题共6小题,每小题5分,共30分。11、①②④【解题分析】

将正方体的表面展开图还原成正方体,利用正方体中线线、线面以及面面关系,以及直线与平面所成角的定义和二面角的定义进行判断.【题目详解】根据条件将正方体进行还原如下图所示:对于命题①,由图形可知,直线与异面,命题①正确;对于命题②,、分别为所在棱的中点,易证四边形为平行四边形,所以,,平面,平面,平面,命题②正确;对于命题③,在正方体中,平面,由于四边形为平行四边形,,平面.、平面,,.则二面角所成的角为,显然不是直角,则平面与平面不垂直,命题③错误;对于命题④,设正方体的棱长为,易知平面,则与平面所成的角为,由勾股定理可得,,在中,,即直线与平面所成线面角的正弦值为,命题④正确;对于命题⑤,在正方体中,平面,且,平面.、平面,,,所以,二面角的平面角为,在中,由勾股定理得,,由余弦定理得,命题⑤错误.故答案为①②④.【题目点拨】本题考查命题真假的判断,考查空间中线线、线面、面面关系的判断以及线面角、二面角的计算,判断时要从空间中有关线线、线面、面面关系的平行或垂直的判定或性质定理出发进行推导,在计算空间角时,则应利用空间角的定义来求解,考查推理能力与运算求解能力,属于中等题.12、.【解题分析】试题分析:根据同角三角函数的基本关系知,,化简整理得①,又因为②,联立方程①②即可解得:,,又因为是第三象限角,所以,故.考点:同角三角函数的基本关系.13、1【解题分析】

根据即可得出,解出即可.【题目详解】∵;∴;解得,故答案为1.【题目点拨】本题主要考查向量坐标的概念,以及平行向量的坐标关系,属于基础题.14、【解题分析】

利用向量内积的坐标运算以及向量模的坐标表示,准确运算,即可求解.【题目详解】由题意,向量,则,,所以.故答案为【题目点拨】本题主要考查了向量内积的坐标运算,以及向量模的坐标运算的应用,其中解答中熟记向量的数量积的运算公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.15、【解题分析】

可通过赋值法依次进行推导,找出数列的周期,进而求解【题目详解】由,,当时,;当时,;当时,;当时,;当时,,当故数列从开始,以3为周期故故答案为:【题目点拨】本题考查数列的递推公式,能根据递推公式找出数列的规律是解题的关键,属于中档题16、15【解题分析】

由a比c长4,b比c长2,用c表示出a与b,可得出a为最大边,即A为最大角,可得出cosA的值,由A为三角形的内角,利用特殊角的三角函数值求出A的度数,同时利用余弦定理表示出cosA,将表示出的a与b代入,并根据最大角的余弦值,得到关于c的方程,求出方程的解得到c的值,然后由b,c及sinA的值,利用三角形的面积公式即可求出三角形ABC的面积.【题目详解】根据题意得:a=c+4,b=c+2,则a为最长边,∴A为最大角,又cosA=-12,且∴A=120cos整理得:c2-c-6=0,即(c−3)(解得:c=3或c=−2(舍去),∴a=3+4=7,b=3+2=5,则△ABC的面积S=12bcsinA=15故答案为:153【题目点拨】余弦定理一定要熟记两种形式:(1)a2=b2+三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】试题分析:(1)的公差为,的公比为,利用等比数列的通项公式和等差数列的前项和公式,由列出关于的方程组,解出的值,从而得到与的表达式.(2)根据数列的特点,可用错位相减法求它的前项和,由(1)的结果知,两边同乘以2得由(1)(2)两式两边分别相减,可转化为等比数列的求和问题解决.试题解析:(1)设的公差为,的公比为,则为正整数,,依题意有,即,解得或者(舍去),故.4分(2).6分,,两式相减得8分,所以12分考点:1、等差数列和等比数列;2、错位相减法求特数列的前项和.18、(1)证明见解析;(2)证明见解析.【解题分析】

(1)根据和的关系式,利用,整理化简得到,从而证明是等差数列;(2)利用由(1)写出的通项,利用裂项相消法求出,从而证明【题目详解】(1)因为,所以当时,两式相减,得到,整理得,又因为,所以,所以数列是等差数列,公差为3;(2)当时,,解得或,因为,所以,由(1)可知,即公差,所以,所以,所以【题目点拨】本题考查根据与的关系证明等差数列,裂项相消法求数列的和,属于中档题.19、Ⅰ见解析;(Ⅱ)【解题分析】

Ⅰ利用函数的奇偶性,利用对称性,写出函数的解析式;然后求解增区间.Ⅱ求出函数的表达式,利用数形结合求解函数的解析式.【题目详解】解:Ⅰ当时,,是奇函数,,,.当时,函数开口向上,增区间是:;当时,函数是二次函数,开口向下,增区间是:;函数的单调增区间为:,;Ⅱ当时,,最小值为;当时,,最大值为1.据此可作出函数的图象,根据图象得,若方程恰有3个不同的解,则a的取值范围是此时时,,或时,.所以.【题目点拨】本题主要考查函数奇偶性的应用,以及方程根的个数问题,利用数形结合是解决本题的关键.20、(1);(2)最大值为,最小值为.【解题分析】

(1)利用两角和的正弦公式以及二倍角的余弦公式、两角和的余弦公式将函数的解析式化简为,然后解不等式可得出函数的单调递增区间;(2)由,可计算出,然后由余弦函数的基本性质可求出函数在区间上的最大值和最小值.【题目详解】(1),解不等式,得,因此,函数的单调递增区间为;(2)当时,.当时,函数取得最大值;当时,函数取得最小值.【题目点拨】本题考查三角函数单调区间以及在定区间上最值的求解,解题时要利用三角恒等变换思想将三角函数的解析式化简,并借助正弦函数或余弦

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论