湖北省黄石市2024届数学高一下期末检测试题含解析_第1页
湖北省黄石市2024届数学高一下期末检测试题含解析_第2页
湖北省黄石市2024届数学高一下期末检测试题含解析_第3页
湖北省黄石市2024届数学高一下期末检测试题含解析_第4页
湖北省黄石市2024届数学高一下期末检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省黄石市2024届数学高一下期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,是两条不同的直线,,是两个不同的平面,若,,则下列命题正确的是A.若,,则B.若,且,则C.若,,则D.若,且,则2.已知,两条不同直线与的交点在直线上,则的值为()A.2 B.1 C.0 D.-13.下列函数,是偶函数的为()A. B. C. D.4.在中,已知,则的面积为()A. B. C. D.5.若实数,满足不等式组则的最大值为()A. B.2 C.5 D.76.已知函数,那么下列式子:①;②;③;④;其中恒成立的是()A.①② B.②③ C.①②④ D.②③④7.法国学者贝特朗发现,在研究事件A“在半径为1的圆内随机地取一条弦,其长度超过圆内接等边三角形的边长3”的概率的过程中,基于对“随机地取一条弦”的含义的的不同理解,事件A的概率PA存在不同的容案该问题被称为贝特朗悖论现给出种解释:若固定弦的一个端点,另个端点在圆周上随机选取,则PA.12 B.13 C.18.在锐角中ΔABC,角A,B所对的边长分别为a,b.若2asinA.π12B.π6C.π9.已知平面向量,,,,且,则向量与向量的夹角为()A. B. C. D.10.已知函数(,)的图象的相邻两条对称轴之间的距离为,将函数的图象向右平移()个单位长度后得到函数的图象,若,的图象都经过点,则的一个可能值是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知直线分别与x轴、y轴交于A,B两点,则等于________.12.直线与直线垂直,则实数的值为_______.13.函数是定义域为R的奇函数,当时,则的表达式为________.14.如图所示的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为17,则x的值为_________.15.从原点向直线作垂线,垂足为点,则的方程为_______.16.己知某产品的销售额y与广告费用x之间的关系如表:单位:万元01234单位:万元1015203035若求得其线性回归方程为,则预计当广告费用为6万元时的销售额为_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.遇龙塔建于明代万历年间,简体砖石结构,屹立于永州市城北潇水东岸,为湖南省重点文物保护单位之一.游客乘船进行观光,到达潇水河河面的处时测得塔顶在北偏东45°的方向上,然后向正北方向行驶后到达处,测得此塔顶在南偏东的方向上,仰角为,且,若塔底与河面在同一水平面上,求此塔的高度.18.已知.(1)化简;(2)若,且,求的值.19.已知向量,.(Ⅰ)求;(Ⅱ)若向量与垂直,求的值.20.已知曲线上的任意一点到两定点、距离之和为,直线交曲线于两点,为坐标原点.(1)求曲线的方程;(2)若不过点且不平行于坐标轴,记线段的中点为,求证:直线的斜率与的斜率的乘积为定值;(3)若直线过点,求面积的最大值,以及取最大值时直线的方程.21.某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(I)求应从小学、中学、大学中分别抽取的学校数目.(II)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,(1)列出所有可能的抽取结果;(2)求抽取的2所学校均为小学的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

利用面面、线面位置关系的判定和性质,直接判定.【题目详解】解:对于A,若n∥α,m∥β,则α∥β或α与β相交,故错;对于B,若α∩β=l,且m⊥l,则m与β不一定垂直,故错;对于C,若m∥n,m∥β,则α与β位置关系不定,故错;对于D,∵α∩β=l,∴l⊂β,∵m∥l,则m∥β,故正确.故选D.【题目点拨】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间相互关系的合理运用.2、C【解题分析】

联立方程求交点,根据交点在在直线上,得到三角关系式,化简得到答案.【题目详解】交点在直线上观察分母和不是恒相等故故答案选C【题目点拨】本题考查了直线方程,三角函数运算,意在考查学生的计算能力.3、B【解题分析】

逐项判断各项的定义域是否关于原点对称,再判断是否满足即可得解.【题目详解】易知各选项的定义域均关于原点对称.,故A错误;,故B正确;,故C错误;,故D错误.故选:B.【题目点拨】本题考查了诱导公式的应用和函数奇偶性的判断,属于基础题.4、B【解题分析】

根据三角形的面积公式求解即可.【题目详解】的面积.

故选:B【题目点拨】本题主要考查了三角形的面积公式,属于基础题.5、C【解题分析】

利用线性规划数形结合分析解答.【题目详解】由约束条件,作出可行域如图:由得A(3,-2).由,化为,由图可知,当直线过点时,直线在轴上的截距最小,有最大值为5.故选C.【题目点拨】本题主要考查利用线性规划求最值,意在考查学生对该知识的理解掌握水平,属于基础题.6、A【解题分析】

根据正弦函数的周期性及对称性,逐项判断,即可得到本题答案.【题目详解】由,得,所以的最小正周期为,即,故①正确;由,令,得的对称轴为,所以是的对称轴,不是的对称轴,故②正确,③不正确;由,令,得的对称中心为,所以不是的对称中心,故④不正确.故选:A【题目点拨】本题主要考查正弦函数的周期性以及对称性.7、B【解题分析】

由几何概型中的角度型得:P(A)=2π【题目详解】设固定弦的一个端点为A,则另一个端点在圆周上BC劣弧上随机选取即可满足题意,则P(A)=2π故选:B.【题目点拨】本题考查了几何概型中的角度型,属于基础题.8、D【解题分析】试题分析:∵2a考点:正弦定理解三角形9、B【解题分析】

根据可得到:,由此求得;利用向量夹角的求解方法可求得结果.【题目详解】由题意知:,则设向量与向量的夹角为则本题正确选项:【题目点拨】本题考查向量夹角的求解,关键是能够通过平方运算将模长转变为向量的数量积,从而得到向量的位置关系.10、D【解题分析】由函数的图象的相邻两条对称轴之间的距离为,得函数的最小正周期为,则,所以函数,的图象向右平移个单位长度,得到的图象,以为的图象都经过点,所以,又,所以,所以,所以或,所以或,因为,所以结合选项可知得一个可能的值为,故选D.二、填空题:本大题共6小题,每小题5分,共30分。11、5【解题分析】

分别求得A,B的坐标,再用两点间的距离公式求解.【题目详解】根据题意令得所以令得所以所以故答案为:5【题目点拨】本题主要考查点坐标的求法和两点间的距离公式,还考查了运算求解的能力,属于基础题.12、【解题分析】

由题得(-1),解之即得a的值.【题目详解】由题得(-1),所以a=2.故答案为;2【题目点拨】本题主要考查两直线垂直的斜率关系,意在考查学生对该知识的理解掌握水平和分析推理能力.13、【解题分析】试题分析:当时,,,因是奇函数,所以,是定义域为R的奇函数,所以,所以考点:函数解析式、函数的奇偶性14、【解题分析】

根据茎叶图中数据和中位数的定义可构造方程求得.【题目详解】甲组数据的中位数为,解得:故答案为:【题目点拨】本题考查茎叶图中中位数相关问题的求解,属于基础题.15、.【解题分析】

先求得直线的斜率,由直线垂直时的斜率关系可求得直线的斜率.再根据点斜式即可求得直线的方程.【题目详解】从原点向直线作垂线,垂足为点则直线的斜率由两条垂直直线的斜率关系可知根据点斜式可得直线的方程为化简得故答案为:【题目点拨】本题考查了直线垂直时的斜率关系,点斜式方程的应用,属于基础题.16、【解题分析】

由已知表格中数据求得,,再由回归直线方程过样本中心点求得,得到回归方程,取即可求得答案.【题目详解】解:,,,.则,取,得.故答案为:【题目点拨】本题考查线性回归方程的求法,考查计算能力,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解题分析】

根据正弦定理求得,然后在直角三角形中求得,即可得到答案.【题目详解】由题意,在中,,故又,故由正弦定理得:,解得,因为,所以,所以.【题目点拨】本题主要考查了解三角形的实际应用问题,其中解答中熟练应用正弦定理和直角三角形的性质是解答的关键,着重考查了推理与运算能力,属于基础题.18、(1);(2).【解题分析】

(1)利用诱导公式化简即得;(2)利用同角的平方关系求出的值,即得解.【题目详解】解:(1).(2)因为,且,所以,所以.【题目点拨】本题主要考查诱导公式和同角的三角函数求值,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于基础题.19、(Ⅰ)-1;(Ⅱ)【解题分析】

(Ⅰ)利用向量的数量积的坐标表示进行计算;(Ⅱ)由垂直关系,得到坐标间的等式关系,然后计算出参数的值.【题目详解】解:(Ⅰ)因向量,∴,∴(Ⅱ),∵向量与垂直,∴∴,∴【题目点拨】已知,若,则有;已知,若,则有.20、(1)(2)证明见解析;(3)或【解题分析】

(1)利用椭圆的定义可知曲线为的椭圆,直接写出椭圆的方程.(2)设直线,设,联立直线方程与椭圆方程,通过韦达定理求解KOM,然后推出直线OM的斜率与的斜率的乘积为定值.(3)设直线方程是与椭圆方程联立,根据面积公式,代入根与系数的关系,利用换元和基本不等式求最值.【题目详解】(1)由题意知曲线是以原点为中心,长轴在轴上的椭圆,设其标准方程为,则有,所以,∴.(2)证明:设直线的方程为,设则由可得,即∴,∴,,,∴直线的斜率与的斜率的乘积=为定值(3)点,由可得,,解得∴设当时,取得最大值.此时,即所以直线方程是【题目点拨】本题考查椭圆定义及方程、韦达定理的应用及三角形面积的范围等问题,考查推理论证能力、运算求解能力,考查化归与转化思想,函数与方程思想,是中档题.21、(1)3,2,1(2)【解题分析】(1)从小学、中学、大学中分别抽取的学校数目为3、2、1.(2)①在抽取到的6所学校中,3所小学分别记为A1,A2,A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论