




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届甘肃省东乡族自治县第二中学高一数学第二学期期末联考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在锐角中,内角,,的对边分别为,,,若,则等于()A. B. C. D.2.已知等比数列{an}的前n项和为Sn,若2Sn=an+1﹣1(n∈N*),则首项a1为()A.1 B.2 C.3 D.43.设平面向量,,若,则等于()A. B. C. D.4.若三棱锥中,,,,且,,,则该三棱锥外接球的表面积为()A. B. C. D.5.已知在中,为线段上一点,且,若,则()A. B. C. D.6.如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于A. B.C. D.7.已知与的夹角为,,,则()A. B. C. D.8.若角的顶点与坐标原点重合,始边与x轴的正半轴重合,终边经过点,则()A. B. C. D.9.下列函数的最小值为的是()A. B.C. D.10.设,,,则的最小值为()A.2 B.4 C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图是一个三角形数表,记,,…,分别表示第行从左向右数的第1个数,第2个数,…,第个数,则当,时,______.12.已知直线与直线互相平行,则______.13.已知等差数列,若,则______.14.数列满足,当时,,则是否存在不小于2的正整数,使成立?若存在,则在横线处直接填写的值;若不存在,就填写“不存在”_______.15.已知一个铁球的体积为,则该铁球的表面积为________.16.假设我国国民生产总值经过10年增长了1倍,且在这10年期间我国国民生产总值每年的年增长率均为常数,则______.(精确到)(参考数据)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,,求角A的值。18.爱心超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完根据往年销售经验,每天需求量与当天最高气温单位:有关如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于20,需求量为200瓶为了确定六月份的订购计划,统计了前三年六月份每天的最高气温数据,得到下面的频数分布表:最高气温天数216362574(1)求六月份这种酸奶一天的需求量不超过300瓶的频率;(2)当六月份有一天这种酸奶的进货量为450瓶时,求这一天销售这种酸奶的平均利润(单位:元)19.已知,,分别为内角,,的对边,且.(1)求角;(2)若,,求边上的高.20.已知.(1)求与的夹角;(2)求.21.已知,.(1)求的值;(2)若,均为锐角,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
由正弦定理将边化角可求得,根据三角形为锐角三角形可求得.【题目详解】由正弦定理得:,即故选:【题目点拨】本题考查正弦定理边化角的应用问题,属于基础题.2、A【解题分析】
等比数列的公比设为,分别令,结合等比数列的定义和通项公式,解方程可得所求首项.【题目详解】等比数列的公比设为,由,令,可得,,两式相减可得,即,又所以.故选:A.【题目点拨】本题考查数列的递推式的运用,等比数列的定义和通项公式,考查方程思想和运算能力,属于基础题.3、D【解题分析】分析:由向量垂直的条件,求解,再由向量的模的公式和向量的数量积的运算,即可求解结果.详解:由题意,平面向量,且,所以,所以,即,又由,所以,故选D.点睛:本题主要考查了向量的数量积的运算和向量模的求解,其中解答中熟记平面向量的数量积的运算公式和向量模的计算公式是解答的关键,着重考查了推理与运算能力,属于基础题.4、B【解题分析】
将棱锥补成长方体,根据长方体的外接球的求解方法法得到结果.【题目详解】根据题意得到棱锥的三条侧棱两两垂直,可以以三条侧棱为长方体的楞,该三棱锥补成长方体,两者的外接球是同一个,外接球的球心是长方体的体对角线的中点处。设球的半径为R,则表面积为故答案为:B.【题目点拨】本题考查了球与几何体的问题,是高考中的重点问题,要有一定的空间想象能力,这样才能找准关系,得到结果,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.5、C【解题分析】
首先,由已知条件可知,再有,这样可用表示出.【题目详解】∵,∴,,∴,∴.故选C.【题目点拨】本题考查平面向量基本定理,解题时用向量加减法表示出,然后用基底表示即可.6、C【解题分析】
利用几何概型的计算概率的方法解决本题,关键要弄准所求的随机事件发生的区域的面积和事件总体的区域面积,通过相除的方法完成本题的解答.【题目详解】解:由几何概型的计算方法,可以得出所求事件的概率为P=.故选C.【点评】本题考查概率的计算,考查几何概型的辨别,考查学生通过比例的方法计算概率的问题,考查学生分析问题解决问题的能力,考查学生几何图形面积的计算方法,属于基本题型.7、A【解题分析】
将等式两边平方,利用平面向量数量积的运算律和定义得出关于的二次方程,解出即可.【题目详解】将等式两边平方得,,即,整理得,,解得,故选:A.【题目点拨】本题考查平面向量模的计算,在计算向量模的时候,一般将向量模的等式两边平方,利用平面向量数量积的定义和运算律进行计算,考查运算求解能力,属于中等题.8、C【解题分析】
根据三角函数定义结合正弦的二倍角公式计算即可【题目详解】由题意,∴,,.故选:C.【题目点拨】本题考查三角函数的定义,考查二倍角的正弦公式,掌握三角函数定义是解题关键.9、C【解题分析】分析:利用基本不等式的性质即可判断出正误,注意“一正二定三相等”的使用法则.详解:A.时显然不满足条件;B.其最小值大于1.D.令因此不正确.故选C.点睛:本题考查基本不等式,考查通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法.10、D【解题分析】
利用基本不等式可得,再结合代入即可得出答案.【题目详解】解:∵,,,∴,∴,当且仅当即,时等号成立,∴,故选:D.【题目点拨】本题主要考查基本不等式求最值,要注意条件“一正二定三相等”,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
由图表,利用归纳法,得出,再利用叠加法,即可求解数列的通项公式.【题目详解】由图表,可得,,,,,可归纳为,利用叠加法可得:,故答案为.【题目点拨】本题主要考查了归纳推理的应用,以及数列的叠加法的应用,其中解答中根据图表,利用归纳法,求得数列的递推关系式是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.12、【解题分析】
由两直线平行得,,解出值.【题目详解】由直线与直线互相平行,得,解得.故答案为:.【题目点拨】本题考查两直线平行的性质,两直线平行,一次项系数之比相等,但不等于常数项之比,属于基础题.13、【解题分析】
利用等差数列的通项公式直接求解.【题目详解】设等差数列公差为,由,得,解得.故答案:.【题目点拨】本题考查等差数列的性质等基础知识,考查运算求解能力,属于基础题.14、70【解题分析】
构造数列,两式与相减可得数列{}为等差数列,求出,让=0即可求出.【题目详解】设两式相减得又数列从第5项开始为等差数列,由已知易得均不为0所以当n=70的时候成立,故答案填70.【题目点拨】如果递推式中出现和的形式,比如,可以尝试退项相减,即让取后,两式作差,和的部分因为相减而抵消,剩下的就好算了。15、.【解题分析】
通过球的体积求出球的半径,然后求出球的表面积.【题目详解】球的体积为球的半径球的表面积为:故答案为:【题目点拨】本题考查球的表面积与体积的求法,考查计算能力,属于基础题.16、【解题分析】
根据题意,设10年前的国民生产总值为,则10年后的国民生产总值为,结合题意可得,解可得的值,即可得答案.【题目详解】解:根据题意,设10年前的国民生产总值为,则10年后的国民生产总值为,则有,即,解可得:,故答案为:.【题目点拨】本题考查函数的应用,涉及指数、对数的运算,关键是得到关于的方程,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、或【解题分析】
根据的值可确定,进而得到,利用两角和差公式、二倍角公式和辅助角公式化简求值可求得,根据所处范围可求得的值,进而求得角.【题目详解】且或或【题目点拨】本题考查利用三角恒等变换的公式化简求值的问题,涉及到两角和差的正弦公式、二倍角公式和辅助角公式的应用、特殊角三角函数值的求解问题;关键是能够通过三角恒等变换公式,整理化简已知式子,得到与所求角有关的角的三角函数值.18、(1);(2)460元.【解题分析】
(1)根据表中的数据,求得最高气温位于区间和最高气温低于20的天数,利用古典概型的概率计算公式,即可求得相应的概率;(2)分别求出温度不低于、温度在,以及温度低于时的利润及相应的概率,即可求解这一天销售这种酸奶的平均利润,得到答案.【题目详解】(1)根据往年销售经验,每天需求量与当天最高气温(单位:)有关.如果最高气温不低于25,需求量为500瓶,如果最高气温位于区间,需求量为300瓶,如果最高气温低于20,需求量为200瓶,得到最高气温位于区间和最高气温低于20的天数为,所以六月份这种酸奶一天的需求量不超过300瓶的频率.(2)当温度大于等于时,需求量为500瓶,利润为:元,当温度在时,需求量为300瓶,利润为:元,当温度低于时,需求量为200瓶,利润为:元,平均利润为【题目点拨】本题主要考查了古典概型及其概率的计算,以及概率的实际应用,其中解答中认真审题,熟练应用古典概型及其概率的计算公式,以及平均利润的计算方法是解答的关键,着重考查了推理与运算能力,属于中档试题.19、(1);(2)【解题分析】
(1)利用正弦定理化简已知条件,利用三角形内角和定理以及两角和的正弦公式化简,由此求得,进而求得的大小.(2)利用正弦定理求得,进而求得的大小,由此求得的值,根据求得边上的高.【题目详解】解:(1)∵∴∴∴∴即:,∴(2)由正弦定理:,∴∵∴∴∴设边上的高为,则有【题目点拨】本小题主要考查利用正弦定理进行边角互化,考查利用正弦定理解三角形,考查三角恒等变换,考查特殊角的三角函数值,属于中档题.20、(1);(2).【解题分析】
(1)由得到,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 提高临床判断能力的护士资格证考试试题及答案
- 心理咨询师考试调节行为的能力试题及答案
- 系统规划与管理师试题及答案的真相探寻
- 网络规划设计师考试中的领导力与团队合作能力阐述试题及答案
- 2025年计算机二级考试深入分析试题及答案
- 中国戏曲文化试题及答案
- 系统架构设计师的战略思维培养试题及答案
- 旅游协会面试题及答案
- 网络设计师行业的核心价值分析及试题及答案
- 电工技师试题讲解及答案
- 浙江省温州市苍南县金乡卫城中学2025届高考英语二模试卷含解析
- 气化炉吊装施工方案
- 糖尿病诊治发展史
- 《冠心病》课件(完整版)
- 医疗机构安全管理制度与实施细则
- 标志设计(全套课件88P)
- 2024年度工程检测服务框架协议版
- 制氢技术与工艺 课件 第5章 电解水制氢
- 2022年福建省高考真题化学试题(解析版)
- 主管护师预测卷儿科护理专业实践能力含答案
- 基于STM32的智慧农业监测系统设计
评论
0/150
提交评论