版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省芮城市2023-2024学年高三上数学期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数(其中是自然对数的底数)的大致图像为()A. B. C. D.2.设分别是双曲线的左右焦点若双曲线上存在点,使,且,则双曲线的离心率为()A. B.2 C. D.3.设则以线段为直径的圆的方程是()A. B.C. D.4.若,则下列关系式正确的个数是()①②③④A.1 B.2 C.3 D.45.已知数列中,,若对于任意的,不等式恒成立,则实数的取值范围为()A. B.C. D.6.若复数满足,则对应的点位于复平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知,,,则()A. B. C. D.8.已知,则的值构成的集合是()A. B. C. D.9.在中,角的对边分别为,,若,,且,则的面积为()A. B. C. D.10.己知函数的图象与直线恰有四个公共点,其中,则()A. B.0 C.1 D.11.正方体,是棱的中点,在任意两个中点的连线中,与平面平行的直线有几条()A.36 B.21 C.12 D.612.是恒成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中,的系数为____________.14.如图是九位评委打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均分为_______.15.一个袋中装着标有数字1,2,3,4,5的小球各2个,从中任意摸取3个小球,每个小球被取出的可能性相等,则取出的3个小球中数字最大的为4的概率是__.16.在面积为的中,,若点是的中点,点满足,则的最大值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)随着现代社会的发展,我国对于环境保护越来越重视,企业的环保意识也越来越强.现某大型企业为此建立了5套环境监测系统,并制定如下方案:每年企业的环境监测费用预算定为1200万元,日常全天候开启3套环境监测系统,若至少有2套系统监测出排放超标,则立即检查污染源处理系统;若有且只有1套系统监测出排放超标,则立即同时启动另外2套系统进行1小时的监测,且后启动的这2套监测系统中只要有1套系统监测出排放超标,也立即检查污染源处理系统.设每个时间段(以1小时为计量单位)被每套系统监测出排放超标的概率均为,且各个时间段每套系统监测出排放超标情况相互独立.(1)当时,求某个时间段需要检查污染源处理系统的概率;(2)若每套环境监测系统运行成本为300元/小时(不启动则不产生运行费用),除运行费用外,所有的环境监测系统每年的维修和保养费用需要100万元.现以此方案实施,问该企业的环境监测费用是否会超过预算(全年按9000小时计算)?并说明理由.18.(12分)已知点P在抛物线上,且点P的横坐标为2,以P为圆心,为半径的圆(O为原点),与抛物线C的准线交于M,N两点,且.(1)求抛物线C的方程;(2)若抛物线的准线与y轴的交点为H.过抛物线焦点F的直线l与抛物线C交于A,B,且,求的值.19.(12分)已知,且的解集为.(1)求实数,的值;(2)若的图像与直线及围成的四边形的面积不小于14,求实数取值范围.20.(12分)某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参与问卷调查的100人的得分(满分:100分)数据,统计结果如表所示:组别男235151812女051010713(1)若规定问卷得分不低于70分的市民称为“环保关注者”,请完成答题卡中的列联表,并判断能否在犯错误概率不超过0.05的前提下,认为是否为“环保关注者”与性别有关?(2)若问卷得分不低于80分的人称为“环保达人”.视频率为概率.①在我市所有“环保达人”中,随机抽取3人,求抽取的3人中,既有男“环保达人”又有女“环保达人”的概率;②为了鼓励市民关注环保,针对此次的调查制定了如下奖励方案:“环保达人”获得两次抽奖活动;其他参与的市民获得一次抽奖活动.每次抽奖获得红包的金额和对应的概率.如下表:红包金额(单位:元)1020概率现某市民要参加此次问卷调查,记(单位:元)为该市民参加间卷调查获得的红包金额,求的分布列及数学期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82821.(12分)某百货商店今年春节期间举行促销活动,规定消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商店经理对春节前天参加抽奖活动的人数进行统计,表示第天参加抽奖活动的人数,得到统计表格如下:123456758810141517(1)经过进一步统计分析,发现与具有线性相关关系.请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(2)该商店规定:若抽中“一等奖”,可领取600元购物券;抽中“二等奖”可领取300元购物券;抽中“谢谢惠顾”,则没有购物券.已知一次抽奖活动获得“一等奖”的概率为,获得“二等奖”的概率为.现有张、王两位先生参与了本次活动,且他们是否中奖相互独立,求此二人所获购物券总金额的分布列及数学期望.参考公式:,,,.22.(10分)为了实现中华民族伟大复兴之梦,把我国建设成为富强民主文明和谐美丽的社会主义现代化强国,党和国家为劳动者开拓了宽广的创造性劳动的舞台.借此“东风”,某大型现代化农场在种植某种大棚有机无公害的蔬菜时,为创造更大价值,提高亩产量,积极开展技术创新活动.该农场采用了延长光照时间和降低夜间温度两种不同方案.为比较两种方案下产量的区别,该农场选取了40间大棚(每间一亩),分成两组,每组20间进行试点.第一组采用延长光照时间的方案,第二组采用降低夜间温度的方案.同时种植该蔬菜一季,得到各间大棚产量数据信息如下图:(1)如果你是该农场的负责人,在只考虑亩产量的情况下,请根据图中的数据信息,对于下一季大棚蔬菜的种植,说出你的决策方案并说明理由;(2)已知种植该蔬菜每年固定的成本为6千元/亩.若采用延长光照时间的方案,光照设备每年的成本为0.22千元/亩;若采用夜间降温的方案,降温设备的每年成本为0.2千元/亩.已知该农场共有大棚100间(每间1亩),农场种植的该蔬菜每年产出两次,且该蔬菜市场的收购均价为1千元/千斤.根据题中所给数据,用样本估计总体,请计算在两种不同的方案下,种植该蔬菜一年的平均利润;(3)农场根据以往该蔬菜的种植经验,认为一间大棚亩产量超过5.25千斤为增产明显.在进行夜间降温试点的20间大棚中随机抽取3间,记增产明显的大棚间数为,求的分布列及期望.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由题意得,函数点定义域为且,所以定义域关于原点对称,且,所以函数为奇函数,图象关于原点对称,故选D.2、A【解析】
由及双曲线定义得和(用表示),然后由余弦定理得出的齐次等式后可得离心率.【详解】由题意∵,∴由双曲线定义得,从而得,,在中,由余弦定理得,化简得.故选:A.【点睛】本题考查求双曲线的离心率,解题关键是应用双曲线定义用表示出到两焦点的距离,再由余弦定理得出的齐次式.3、A【解析】
计算的中点坐标为,圆半径为,得到圆方程.【详解】的中点坐标为:,圆半径为,圆方程为.故选:.【点睛】本题考查了圆的标准方程,意在考查学生的计算能力.4、D【解析】
a,b可看成是与和交点的横坐标,画出图象,数形结合处理.【详解】令,,作出图象如图,由,的图象可知,,,②正确;,,有,①正确;,,有,③正确;,,有,④正确.故选:D.【点睛】本题考查利用函数图象比较大小,考查学生数形结合的思想,是一道中档题.5、B【解析】
先根据题意,对原式进行化简可得,然后利用累加法求得,然后不等式恒成立转化为恒成立,再利用函数性质解不等式即可得出答案.【详解】由题,即由累加法可得:即对于任意的,不等式恒成立即令可得且即可得或故选B【点睛】本题主要考查了数列的通项的求法以及函数的性质的运用,属于综合性较强的题目,解题的关键是能够由递推数列求出通项公式和后面的转化函数,属于难题.6、D【解析】
利用复数模的计算、复数的除法化简复数,再根据复数的几何意义,即可得答案;【详解】,对应的点,对应的点位于复平面的第四象限.故选:D.【点睛】本题考查复数模的计算、复数的除法、复数的几何意义,考查运算求解能力,属于基础题.7、B【解析】
利用指数函数和对数函数的单调性,将数据和做对比,即可判断.【详解】由于,,故.故选:B.【点睛】本题考查利用指数函数和对数函数的单调性比较大小,属基础题.8、C【解析】
对分奇数、偶数进行讨论,利用诱导公式化简可得.【详解】为偶数时,;为奇数时,,则的值构成的集合为.【点睛】本题考查三角式的化简,诱导公式,分类讨论,属于基本题.9、C【解析】
由,可得,化简利用余弦定理可得,解得.即可得出三角形面积.【详解】解:,,且,,化为:.,解得..故选:.【点睛】本题考查了向量共线定理、余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.10、A【解析】
先将函数解析式化简为,结合题意可求得切点及其范围,根据导数几何意义,即可求得的值.【详解】函数即直线与函数图象恰有四个公共点,结合图象知直线与函数相切于,,因为,故,所以.故选:A.【点睛】本题考查了三角函数的图像与性质的综合应用,由交点及导数的几何意义求函数值,属于难题.11、B【解析】
先找到与平面平行的平面,利用面面平行的定义即可得到.【详解】考虑与平面平行的平面,平面,平面,共有,故选:B.【点睛】本题考查线面平行的判定定理以及面面平行的定义,涉及到了简单的组合问题,是一中档题.12、A【解析】
设成立;反之,满足,但,故选A.二、填空题:本题共4小题,每小题5分,共20分。13、16【解析】
要得到的系数,只要求出二项式中的系数减去的系数的2倍即可【详解】的系数为.故答案为:16【点睛】此题考查二项式的系数,属于基础题.14、1【解析】
写出茎叶图对应的所有的数,去掉最高分,最低分,再求平均分.【详解】解:所有的数为:77,78,82,84,84,86,88,93,94,共9个数,去掉最高分,最低分,剩下78,82,84,84,86,88,93,共7个数,平均分为,故答案为1.【点睛】本题考查茎叶图及平均数的计算,属于基础题.15、【解析】
由题,得满足题目要求的情况有,①有一个数字4,另外两个数字从1,2,3里面选和②有两个数字4,另外一个数字从1,2,3里面选,由此即可得到本题答案.【详解】满足题目要求的情况可以分成2大类:①有一个数字4,另外两个数字从1,2,3里面选,一共有种情况;②有两个数字4,另外一个数字从1,2,3里面选,一共有种情况,又从中任意摸取3个小球,有种情况,所以取出的3个小球中数字最大的为4的概率.故答案为:【点睛】本题主要考查古典概型与组合的综合问题,考查学生分析问题和解决问题的能力.16、【解析】
由任意三角形面积公式与构建关系表示|AB||AC|,再由已知与平面向量的线性运算、平面向量数量积的运算转化,最后由重要不等式求得最值.【详解】由△ABC的面积为得|AB||AC|sin∠BAC=,所以|AB||AC|sin∠BAC=,①又,即|AB||AC|cos∠BAC=,②由①与②的平方和得:|AB||AC|=,又点M是AB的中点,点N满足,所以,当且仅当时,取等号,即的最大值是为.故答案为:【点睛】本题考查平面向量中由线性运算表示未知向量,进而由重要不等式求最值,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)不会超过预算,理由见解析【解析】
(1)求出某个时间段在开启3套系统就被确定需要检查污染源处理系统的概率为,某个时间段在需要开启另外2套系统才能确定需要检查污染源处理系统的概率为,可得某个时间段需要检查污染源处理系统的概率;(2)设某个时间段环境监测系统的运行费用为元,则的可能取值为900,1500.求得,,求得其分布列和期望,对其求导,研究函数的单调性,可得期望的最大值,从而得出结论.【详解】(1)某个时间段在开启3套系统就被确定需要检查污染源处理系统的概率为,某个时间段在需要开启另外2套系统才能确定需要检查污染源处理系统的概率为某个时间段需要检查污染源处理系统的概率为.(2)设某个时间段环境监测系统的运行费用为元,则的可能取值为900,1500.,令,则当时,,在上单调递增;当时,,在上单调递减,的最大值为,实施此方案,最高费用为(万元),,故不会超过预算.【点睛】本题考查独立重复事件发生的概率、期望,及运用求导函数研究期望的最值,由根据期望值确定方案,此类题目解决的关键在于将生活中的量转化为数学中和量,属于中档题.18、(1)(2)4【解析】
(1)将点P横坐标代入抛物线中求得点P的坐标,利用点P到准线的距离d和勾股定理列方程求出p的值即可;(2)设A、B点坐标以及直线AB的方程,代入抛物线方程,利用根与系数的关系,以及垂直关系,得出关系式,计算的值即可.【详解】(1)将点P横坐标代入中,求得,∴P(2,),,点P到准线的距离为,∴,∴,解得,∴,∴抛物线C的方程为:;(2)抛物线的焦点为F(0,1),准线方程为,;设,直线AB的方程为,代入抛物线方程可得,∴,…①由,可得,又,,∴,∴,即,∴,…②把①代入②得,,则.【点睛】本题考查直线与抛物线的位置关系,以及抛物线与圆的方程应用问题,考查转化思想以及计算能力,是中档题.19、(1),;(2)【解析】
(1)解绝对值不等式得,根据不等式的解集为列出方程组,解出即可;(2)求出的图像与直线及交点的坐标,通过分割法将四边形的面积分为两个三角形,列出不等式,解不等式即可.【详解】(1)由得:,,即,解得,.(2)的图像与直线及围成的四边形,,,,.过点向引垂线,垂足为,则.化简得:,(舍)或.故的取值范围为.【点睛】本题主要考查了绝对值不等式的求法,以及绝对值不等式在几何中的应用,属于中档题.20、(1)不能;(2)①;②分布列见解析,.【解析】
(1)根据题目所给的数据可求2×2列联表即可;计算K的观测值K2,对照题目中的表格,得出统计结论.(2)由相互独立事件的概率可得男“环保达人”又有女“环保达人”的概率:P=1﹣()3﹣()3,解出X的分布列及数学期望E(X)即可;【详解】(1)由图中表格可得列联表如下:非“环保关注者”是“环保关注者”合计男104555女153045合计2575100将列联表中的数据代入公式计算得K”的观测值,所以在犯错误的概率不超过0.05的前提下,不能认为是否为“环保关注者”与性别有关.(2)视频率为概率,用户为男“环保达人”的概率为.为女“环保达人”的概率为,①抽取的3名用户中既有男“环保达人”又有女“环保达人”的概率为;②的取值为10,20,30,40.,,,,所以的分布列为10203040.【点睛】本题考查了独立性检验的应用问题,考查了概率分布列和期望,计算能力的应用问题,是中档题目.21、(1);(2)见解析【解析】试题分析:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店前台接待员工作总结
- 高校教研工作的持续改进与创新
- 金融科技行业技术职位总结
- 互娱行业花絮分享培训心得
- 有效规划财务部年终工作总结
- 人机界面设计师界面设计交互设计
- 高危行业安全监管工作方案计划
- 设备维修维护合同范本完整版
- 司法行业审判培训
- 服装店前台接待工作总结
- 《理想信念教育》课件
- 2023年高级EHS工程师年度总结及下年工作展望
- 《城市规划原理试题》(附答案)
- 110kV升压站构支架组立施工方案
- 钢构件应力超声检测技术规程
- -《多轴数控加工及工艺》(第二版)教案
- 体 育 课 教 学 评 价 量 表
- 23秋国家开放大学《汉语国际教育概论》阶段测验1-2+教学活动1参考答案
- 新员工信息安全课件培训
- 小学英语-Unit3What would you likePartB Let's talk教学设计学情分析教材分析课后反思
- OA系统功能说明书
评论
0/150
提交评论