2024届芜湖市重点中学数学高一下期末达标测试试题含解析_第1页
2024届芜湖市重点中学数学高一下期末达标测试试题含解析_第2页
2024届芜湖市重点中学数学高一下期末达标测试试题含解析_第3页
2024届芜湖市重点中学数学高一下期末达标测试试题含解析_第4页
2024届芜湖市重点中学数学高一下期末达标测试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届芜湖市重点中学数学高一下期末达标测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,,,且,则实数的值为A. B. C. D.2.(2017新课标全国Ⅲ理科)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A. B.C. D.3.若{an}是等差数列,且a1+a4+a7=45,a2+a5+a8=39,则a3+a6+a9=()A.39 B.20 C.19.5 D.334.在区间上随机选取一个实数,则事件“”发生的概率是()A. B. C. D.5.下列结论中错误的是()A.若,则 B.函数的最小值为2C.函数的最小值为2 D.若,则函数6.在中,,点P是直线BN上一点,若,则实数m的值是()A.2 B. C. D.7.已知平面向量,,若与同向,则实数的值是()A. B. C. D.8.已知2弧度的圆心角所对的弧长为2,则这个圆心角所对的弦长是()A. B. C. D.9.已知各个顶点都在同一球面上的正方体的棱长为2,则这个球的表面积为()A. B. C. D.10.某三棱锥的三视图如图所示,该三棱锥的外接球表面积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.计算__________.12.若正四棱锥的所有棱长都相等,则该棱锥的侧棱与底面所成的角的大小为____.13.若Sn为等比数列an的前n项的和,8a14.方程在区间内解的个数是________15.函数的定义域是_____.16.一个公司共有240名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为20的样本.已知某部门有60名员工,那么从这一部门抽取的员工人数是.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量.(1)若,求的值;(2)当时,求与夹角的余弦值.18.为选派一名学生参加全市实践活动技能竟赛,A、B两位同学在学校的学习基地现场进行加工直径为20mm的零件测试,他俩各加工的10个零件直径的相关数据如图所示(单位:mm)A、B两位同学各加工的10个零件直径的平均数与方差列于下表;平均数方差A200.016B20s2B根据测试得到的有关数据,试解答下列问题:(Ⅰ)计算s2B,考虑平均数与方差,说明谁的成绩好些;(Ⅱ)考虑图中折线走势情况,你认为派谁去参赛较合适?请说明你的理由.19.现有一个算法框图如图所示。(1)试着将框图的过程用一个函数来表示;(2)若从中随机选一个数输入,则输出的满足的概率是多少?20.已知是等差数列,设数列的前n项和为,且,,又,.(1)求和的通项公式;(2)令,求的前n项和.21.解方程:.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

求出的坐标,由得,得到关于的方程.【题目详解】,,因为,所以,故选A.【题目点拨】本题考查向量减法和数量积的坐标运算,考查运算求解能力.2、B【解题分析】绘制圆柱的轴截面如图所示,由题意可得:,结合勾股定理,底面半径,由圆柱的体积公式,可得圆柱的体积是,故选B.【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.3、D【解题分析】

根据等差数列的通项公式,纵向观察三个式子的项的脚标关系,可巧解.【题目详解】由等差数列得:所以同理:故选D.【题目点拨】本题考查等差数列通项公式,关键纵向观察出脚标的特殊关系更妙,属于中档题.4、B【解题分析】

根据求出的范围,再由区间长度比即可得出结果.【题目详解】区间的长度为;由,解得,即,区间长度为,事件“”发生的概率是.故选B.【题目点拨】本题主要考查与长度有关的几何概型,熟记概率计算公式即可,属于基础题型.5、B【解题分析】

根据均值不等式成立的条件逐项分析即可.【题目详解】对于A,由知,,所以,故选项A本身正确;对于B,,但由于在时不可能成立,所以不等式中的“”实际上取不到,故选项B本身错误;对于C,因为,当且仅当,即时,等号成立,故选项C本身正确;对于D,由知,,所以lnx+=-2,故选项D本身正确.故选B.【题目点拨】本题主要考查了均值不等式及不等式取等号的条件,属于中档题.6、B【解题分析】

根据向量的加减运算法则,通过,把用和表示出来,即可得到的值.【题目详解】在中,,点是直线上一点,所以,又三点共线,所以,即.故选:B.【题目点拨】本题考查实数值的求法,解题时要认真审题,注意平面向量加法法则的合理运用,属于基础题.7、D【解题分析】

通过同向向量的性质即可得到答案.【题目详解】与同向,,解得或(舍去),故选D.【题目点拨】本题主要考查平行向量的坐标运算,但注意同向,难度较小.8、D【解题分析】

由弧长公式求出圆半径,再在直角三角形中求解.【题目详解】,如图,设是中点,则,,,∴.故选D.【题目点拨】本题考查扇形弧长公式,在求弦长时,常在直角三角形中求解.9、A【解题分析】

先求出外接球的半径,再求球的表面积得解.【题目详解】由题得正方体的对角线长为,所以.故选A【题目点拨】本题主要考查多面体的外接球问题和球的表面积的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.10、D【解题分析】

根据三视图还原几何体,由三棱锥的几何特征即可求出其外接球表面积.【题目详解】根据三视图可知,该几何体如图所示:所以该几何体的外接球,即是长方体的外接球.因为,所以外接球直径.故该三棱锥的外接球表面积为.故选:D.【题目点拨】本题主要考查由三视图还原几何体,并计算其外接球的表面积,意在考查学生的直观想象能力和数学运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

采用分离常数法对所给极限式变形,可得到极限值.【题目详解】.【题目点拨】本题考查分离常数法求极限,难度较易.12、【解题分析】

先作出线面角,再利用三角函数求解即可.【题目详解】如图,设正四棱锥的棱长为1,作在底面的射影,则为与底面所成角,为正方形的中心,,,,故答案为.【题目点拨】本题考查线面角,考查学生的计算能力,作出线面角是关键.属于基础题.13、-7【解题分析】设公比为q,则8a1q=-a114、4.【解题分析】分析:通过二倍角公式化简得到,进而推断或,进而求得结果.详解:,所以或,因为,所以或或或,故解的个数是4.点睛:该题考查的是有关方程解的个数问题,在解题的过程中,涉及到的知识点有正弦的倍角公式,方程的求解问题,注意一定不要两边除以,最后求得结果.15、.【解题分析】

由题意得到关于x的不等式,解不等式可得函数的定义域.【题目详解】由已知得,即解得,故函数的定义域为.【题目点拨】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.16、5【解题分析】设一部门抽取的员工人数为x,则.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)-3;(2)-.【解题分析】

(1)根据向量平行的坐标关系求得(2)根据向量的数量积运算求得夹角.【题目详解】解(1)由题意,得.因为,所以,解得.(2)当时,.设与的夹角为θ,则.所以与夹角的余弦值为-.【题目点拨】本题考查向量的平行关系和向量数量积运算,属于基础题.18、(Ⅰ)0.008,B的成绩好些(Ⅱ)派A去参赛较合适【解题分析】

(Ⅰ)利用方差的公式,求得S2A>S2B,从而在平均数相同的情况下,B的波动较小,由此得到B的成绩好一些;(Ⅱ)从图中折线趋势可知尽管A的成绩前面起伏大,但后来逐渐稳定,误差小,预测A的潜力大,从而派A去参赛较合适.【题目详解】(Ⅰ)由题意,根据表中的数据,利用方差的计算公式,可得S2B∴S2A>S2B,∴在平均数相同的情况下,B的波动较小,∴B的成绩好些.(Ⅱ)从图中折线趋势可知:尽管A的成绩前面起伏大,但后来逐渐稳定,误差小,预测A的潜力大,∴派A去参赛较合适.【题目点拨】本题主要考查了方差的求法及其应用,同时考查了折线图、方差的性质等基础知识.19、(1);(2).【解题分析】

(1)根据输出结果的条件可得定义域;根据最终的条件结构可得到不同区间内的解析式,从而得到函数解析式;(2)分别在两段区间内求得不等式的解集,根据几何概型计算公式求得结果.【题目详解】(1)由程序框图可知,若要输出结果,根据条件结构可知,当时,;当时,框图可用函数来表示(2)当时,在上无解当时,在上解集为:所求概率为:【题目点拨】本题考查读懂程序框图的功能、几何概型中的长度型问题的求解;关键是能够根据三角函数的值域准确求解出自变量的取值范围,从而利用几何概型的知识来进行求解.20、(1),(2)【解题分析】

(1)运用数列的递推式,以及等比数列的通项公式可得,是等差数列,运用等差数列的通项公式可得首项和公差,可得所求通项公式;(2)求得,由数列的错位相减法求和,结合等比

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论