福建省厦冂双十中学2024届高一数学第二学期期末监测模拟试题含解析_第1页
福建省厦冂双十中学2024届高一数学第二学期期末监测模拟试题含解析_第2页
福建省厦冂双十中学2024届高一数学第二学期期末监测模拟试题含解析_第3页
福建省厦冂双十中学2024届高一数学第二学期期末监测模拟试题含解析_第4页
福建省厦冂双十中学2024届高一数学第二学期期末监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省厦冂双十中学2024届高一数学第二学期期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列满足,则()A.10 B.20 C.100 D.2002.过点且垂直于直线的直线方程为()A. B.C. D.3.某兴趣小组合作制作了一个手工制品,并将其绘制成如图所示的三视图,其中侧视图中的圆的半径为3,则制作该手工制品表面积为()A. B. C. D.4.在中,已知,,若点在斜边上,,则的值为().A.6 B.12 C.24 D.485.已知变量x,y满足约束条件x+y-2≥0,y≤2,x-y≤0,则A.2 B.3 C.4 D.66.下列四组中的函数,表示同一个函数的是()A., B.,C., D.,7.()A. B. C. D.8.在中,角A,B,C所对的边分别为a,b,c,若,,则的值为()A. B. C. D.9.设等差数列,则等于()A.120 B.60 C.54 D.10810.已知向量,若,则()A.1 B. C.2 D.3二、填空题:本大题共6小题,每小题5分,共30分。11.已知圆柱的底面圆的半径为2,高为3,则该圆柱的侧面积为________.12.在四面体A-BCD中,AB=AC=DB=DC=BC,且四面体A-BCD的最大体积为,则四面体A-BCD外接球的表面积为________.13.若三角形ABC的三个角A,B,C成等差数列,a,b,c分别为角A,B,C的对边,三角形ABC的面积,则b的最小值是________.14.等比数列中前n项和为,且,,,则项数n为____________.15.正六棱柱底面边长为10,高为15,则这个正六棱柱的体积是_____.16.已知且,则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.半期考试后,班长小王统计了50名同学的数学成绩,绘制频率分布直方图如图所示.根据频率分布直方图,估计这50名同学的数学平均成绩;用分层抽样的方法从成绩低于115的同学中抽取6名,再在抽取的这6名同学中任选2名,求这两名同学数学成绩均在中的概率.18.向量函数.(1)求的最小正周期及单调增区间;(2)求在区间上的最大值和最小值及取最值时的值.19.某校从高一年级学生中随机抽取60名学生,将期中考试的物理成绩(均为整数)分成六段:,,,…,后得到如图频率分布直方图.(1)根据频率分布直方图,估计众数和中位数;(2)用分层抽样的方法从的学生中抽取一个容量为5的样本,从这五人中任选两人参加补考,求这两人的分数至少一人落在的概率.20.某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价为3元,根据以往的经验售价为4元时,可卖出280桶;若销售单价每增加1元,日均销售量就减少40桶,则这个经营部怎样定价才能获得最大利润?最大利润是多少?21.已知函数.(1)判断函数奇偶性;(2)讨论函数的单调性;(3)比较与的大小.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

由题可得数列是以为首相,为公差的等差数列,求出数列的通项公式,进而求出【题目详解】因为,所以数列是以为首项,为公差的等差数列,所以,则【题目点拨】本题考查由递推公式证明数列是等差数列以及等差数列的通项公式,属于一般题.2、C【解题分析】

先求出直线的斜率,再求出所求直线的斜率,再利用直线的点斜式方程求解.【题目详解】由题得直线的斜率为,所以所求的直线的斜率为,所以所求的直线方程为即.故选:C【题目点拨】本题主要考查互相垂直直线的性质,考查直线方程的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.3、D【解题分析】

由三视图可知,得到该几何体是由两个圆锥组成的组合体,根据几何体的表面积公式,即可求解.【题目详解】由三视图可知,该几何体是由两个圆锥组成的组合体,其中圆锥的底面半径为3,高为4,所以几何体的表面为.选D.【题目点拨】本题考查了几何体的三视图及表面积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.4、C【解题分析】试题分析:因为,,,所以==+==,故选C.考点:1、平面向量的加减运算;2、平面向量的数量积运算.5、D【解题分析】

试题分析:把函数转化为表示斜率为截距为平行直线系,当截距最大时,最大,由题意知当直线过和两条直线交点时考点:线性规划的应用.【题目详解】请在此输入详解!6、A【解题分析】

分别判断两个函数的定义域和对应法则是否相同即可.【题目详解】.的定义域为,,两个函数的定义域相同,对应法则相同,所以,表示同一个函数..的定义域为,,两个函数的定义域相同,对应法则不相同,所以,不能表示同一个函数..的定义域为,的定义域为,两个函数的定义域不相同,所以,不能表示同一个函数..的定义域为,的定义域,两个函数的定义域不相同,对应法则相同,所以,不能表示同一个函数.故选.【题目点拨】本题主要考查判断两个函数是否为同一函数,判断的依据主要是判断两个函数的定义域和对应法则是否相同即可.7、A【解题分析】

将根据诱导公式化为后,利用两角和的正弦公式可得.【题目详解】.故选:A【题目点拨】本题考查了诱导公式,考查了两角和的正弦公式,属于基础题.8、D【解题分析】

由正弦定理及余弦定理可得,,然后求解即可.【题目详解】解:由可得,则,①又,所以,即,所以②由①②可得:,由余弦定理可得,故选:D.【题目点拨】本题考查了正弦定理及余弦定理的综合应用,重点考查了两角和的正弦公式,属中档题.9、C【解题分析】

题干中只有一个等式,要求前9项的和,可利用等差数列的性质解决。【题目详解】,选C.【题目点拨】题干中只有一个等式,要求前9项的和,可利用等差数列的性质解决。也可将等式全部化为的表达式,整体代换计算出10、B【解题分析】

可求出,根据即可得出,进行数量积的坐标运算即可求出x.【题目详解】;∵;∴;解得.故选B.【题目点拨】本题考查向量垂直的充要条件,向量坐标的减法和数量积运算,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

圆柱的侧面打开是一个矩形,长为底面的周长,宽为圆柱的高,即,带入数据即可.【题目详解】因为圆柱的底面圆的半径为2,所以圆柱的底面圆的周长为,则该圆柱的侧面积为.【题目点拨】此题考察圆柱侧面积公式,属于基础题目.12、【解题分析】

当面ABC面与BCD垂直时,四面体A-BCD的体积最大,根据最大体积为求出四面体的边长,又△ABC和△BCD是等腰直角三角形,所以四面体A-BCD外接球的球心位于的中点,从而得到半径,即可求解.【题目详解】如图所示:当面ABC面与BCD垂直时,四面体A-BCD的体积最大为,又AB=AC=DB=DC=BC,所以△ABC和△BCD是等腰直角三角形,所以四面体A-BCD外接球的球心为的中点,又,解得,,,所以四面体A-BCD外接球的半径故四面体A-BCD外接球的表面积为.【题目点拨】本题考查多面体的外接圆及相关计算,多面体外接圆问题关键在圆心和半径.13、【解题分析】

先求出,再根据面积得到,再利用余弦定理和基本不等式得解.【题目详解】由题得,所以.由余弦定理得,当且仅当时取等.所以b的最小值是.故答案为:【题目点拨】本题主要考查余弦定理解三角形,考查基本不等式求最值,意在考查学生对这些知识的理解掌握水平.14、6【解题分析】

利用等比数列求和公式求得,再利用通项公式求解n即可【题目详解】,代入,,得,又,得.故答案为:6【题目点拨】本题考查等比数列的通项公式及求和公式的基本量计算,熟记公式准确计算是关键,是基础题15、【解题分析】

正六棱柱是底面为正六边形的直棱柱,利用计算可得结果.【题目详解】因为正六棱柱底面边长为10,所以其面积,所以体积.【题目点拨】本题考查正六棱柱的概念及其体积的计算,考查基本运算能力.16、【解题分析】

根据数列极限的方法求解即可.【题目详解】由题,故.又.故.故.故答案为:【题目点拨】本题主要考查了数列极限的问题,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

⑴用频率分布直方图中的每一组数据的平均数乘以对应的概率并求和即可得出结果;⑵首先可通过分层抽样确定6人中在分数段以及分数段中的人数,然后分别写出所有的基本事件以及满足题意中“两名同学数学成绩均在中”的基本事件,最后两者相除,即可得出结果.【题目详解】⑴由频率分布表,估计这50名同学的数学平均成绩为:;⑵由频率分布直方图可知分数低于115分的同学有人,则用分层抽样抽取6人中,分数在有1人,用a表示,分数在中的有5人,用、、、、表示,则基本事件有、、、、、、、、、、、、、、,共15个,满足条件的基本事件为、、、、、、、、、,共10个,所以这两名同学分数均在中的概率为.【题目点拨】本题考查了频率分布直方图以及古典概型的相关性质,解决本题的关键是对频率分布直方图的理解以及对古典概型概率的计算公式的使用,考查推理能力,是简单题.18、(1),(2),最大值为;,最小值为0【解题分析】

(1)用已知的向量表示出,再进行化简整理,可得;(2)由正弦函数的值域可得。【题目详解】(1)由题得,,化简整理得,因此的最小正周期为,由得,则单调增区间为.(2)若,则,当,即时,取最大值,当,即时,取最小值0.综上,当时,取最大值,当时,取最小值0.【题目点拨】本题考查向量的运算和函数的周期,单调区间以及最值,知识点考查全面,难度不大。19、(1)众数为75,中位数为73.33;(2).【解题分析】

(1)由频率分布直方图能求出a=0.1.由此能求出众数和中位数;(2)用分层抽样的方法从[40,60)的学生中抽取一个容量为5的样本,从这五人中任选两人参加补考,基本事件总数,这两人的分数至少一人落在[50,60)包含的基本事件个数,由此能求出这两人的分数至少一人落在[50,60)的概率.【题目详解】(1)由频率分布直方图得:,

解得,

所以众数为:,的频率为,

的频率为,

中位数为:.(2)用分层抽样的方法从的学生中抽取一个容量为5的样本,

的频率为0.1,的频率为0.15,

中抽到人,中抽取人,从这五人中任选两人参加补考,

基本事件总数,这两人的分数至少一人落在包含的基本事件个数,所以这两人的分数至少一人落在的概率.【题目点拨】在求解有关古典概型概率的问题时,首先求出样本空间中基本事件的总数,其次求出概率事件中含有多少个基本事件,然后根据公式求得概率20、定价为每桶7元,最大利润为440元.【解题分析】

若设定价在进价的基础上增加元,日销售利润为元,则,其中,整理函数,可得取何值时,有最大值,即获得最大利润【题目详解】设定价在进价的基础上增加元,日销售利润为元,则,由于,且,所以,;即,.所以,当时,取最大值.此时售价为,此时的最大利润为440元.【题目点拨】本题主要考查二次函数的应用,意在考查学生对该知识的理解掌握水平,属于基础题.21、(1)是偶函数(2)见解析(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论