版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省吕梁学院附中2024届数学高一第二学期期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图所示的阴影部分是由轴及曲线围成,在矩形区域内随机取一点,则该点取自阴影部分的概率是()A. B. C. D.2.执行下面的程序框图,则输出的的值为()A.10 B.34 C.36 D.1543.已知,其中,则()A. B. C. D.4.如图,正方形中,是的中点,若,则()A. B. C. D.5.若三棱锥中,,,,且,,,则该三棱锥外接球的表面积为()A. B. C. D.6.已知数列,其前n项和为,且,则的值是()A.4 B.8 C.2 D.97.为了得到的图象,只需将的图象()A.向右平移 B.向左平移 C.向右平移 D.向左平移8.的值等于()A. B. C. D.9.如右图所示的直观图,其表示的平面图形是(A)正三角形(B)锐角三角形(C)钝角三角形(D)直角三角形10.设,,在,,…,中,正数的个数是()A.15 B.16 C.18 D.20二、填空题:本大题共6小题,每小题5分,共30分。11.在三棱锥中,平面,是边长为2的正三角形,,则三棱锥的外接球的表面积为__________.12.给出下列四个命题:①在中,若,则;②已知点,则函数的图象上存在一点,使得;③函数是周期函数,且周期与有关,与无关;④设方程的解是,方程的解是,则.其中真命题的序号是______.(把你认为是真命题的序号都填上)13.在△ABC中,a、b、c分别为角A、B、C的对边,若b·cosC=c·cosB,且cosA=,则cosB的值为_____.14.将正整数按下图方式排列,2019出现在第行第列,则______;12345678910111213141516………15.数列的通项,前项和为,则____________.16.过直线上一点作圆的两条切线,切点分别为,若的最大值为,则实数__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.2019年某开发区一家汽车生产企业计划引进一批新能源汽车制造设备,通过市场分析,全年需投入固定成本3000万元,每生产x(百辆),需另投入成本万元,且,由市场调研知,每辆车售价6万元,且全年内生产的车辆当年能全部销售完.(1)求出2019年的利润(万元)关于年产量x(百辆)的函数关系式;(利润=销售额成本)(2)2019年产量为多少(百辆)时,企业所获利润最大?并求出最大利润.18.设数列的首项,为常数,且(1)判断数列是否为等比数列,请说明理由;(2)是数列的前项的和,若是递增数列,求的取值范围.19.已知函数,.(1)求函数在上的单调递增区间;(2)在中,内角、、所对边的长分别是,若,,,求的面积的值.20.某高速公路隧道内设双行线公路,其截面由一段圆弧和一个长方形的三边构成(如图所示).已知隧道总宽度为,行车道总宽度为,侧墙面高,为,弧顶高为.()建立适当的直角坐标系,求圆弧所在的圆的方程.()为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上的高度之差至少要有.请计算车辆通过隧道的限制高度是多少.21.已知向量(),向量,,且.(Ⅰ)求向量;(Ⅱ)若,,求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】,所以,故选A。2、B【解题分析】试题分析:第一次循环:第二次循环:第三次循环:第四次循环:结束循环,输出,选B.考点:循环结构流程图【名师点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.3、D【解题分析】
先根据同角三角函数关系求得,再根据二倍角正切公式得结果.【题目详解】因为,且,所以,因为,所以,因此,从而,,选D.【题目点拨】本题考查同角三角函数关系以及二倍角正切公式,考查基本分析求解能力,属基础题.4、B【解题分析】
以为坐标原点建立平面直角坐标系,设正方形边长为,利用平面向量的坐标运算建立有关、的方程组,求出这两个量的值,可得出的值.【题目详解】以为坐标原点建立平面直角坐标系,设正方形边长为,由此,,故,解得.故选B.【题目点拨】本题考查平面向量的线性运算,考查平面向量的基底表示,解题时也可以利用坐标法来求解,考查运算求解能力,属于中等题.5、B【解题分析】
将棱锥补成长方体,根据长方体的外接球的求解方法法得到结果.【题目详解】根据题意得到棱锥的三条侧棱两两垂直,可以以三条侧棱为长方体的楞,该三棱锥补成长方体,两者的外接球是同一个,外接球的球心是长方体的体对角线的中点处。设球的半径为R,则表面积为故答案为:B.【题目点拨】本题考查了球与几何体的问题,是高考中的重点问题,要有一定的空间想象能力,这样才能找准关系,得到结果,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.6、A【解题分析】
根据求解.【题目详解】由题得.故选:A【题目点拨】本题主要考查数列和的关系,意在考查学生对这些知识的理解掌握水平,属于基础题.7、B【解题分析】
先利用诱导公式将函数化成正弦函数的形式,再根据平移变换,即可得答案.【题目详解】∵,∵,∴只需将的图象向左平移可得.故选:B.【题目点拨】本题考查诱导公式、三角函数的平移变换,考查逻辑推理能力和运算求解能力,求解时注意平移是针对自变量而言的.8、D【解题分析】
利用诱导公式先化简,再利用差角的余弦公式化简得解.【题目详解】由题得原式=.故选D【题目点拨】本题主要考查诱导公式和差角的余弦公式化简求值,意在考查学生对这些知识的理解掌握水平,属于基础题.9、D【解题分析】略10、D【解题分析】
根据数列的通项公式可判断出数列的正负,然后分析的正负,再由的正负即可确定出,,…,中正数的个数.【题目详解】当时,,当时,,因为,所以,因为,,所以取等号时,所以均为正,又因为,所以均为正,所以正数的个数是:.故选:D.【题目点拨】本题考查数列与函数综合应用,着重考查了推理判断能力,难度较难.对于数列各项和的正负,可通过数列本身的单调性周期性进行判断,从而为判断各项和的正负做铺垫.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
设三棱锥的外接球半径为,利用正弦定理求出的外接圆半径,再利用公式可计算出外接球半径,最后利用球体的表面积公式可计算出结果.【题目详解】由正弦定理可得,的外接圆直径为,,设三棱锥的外接球半径为,平面,,因此,三棱锥的外接球表面积为,故答案为.【题目点拨】本题考查多面体的外接球,考查球体表面积的计算,在求解直棱柱后直棱锥的外接球,若底面外接圆半径为,高为,可利用公式得出外接球的半径,解题时要熟悉这些结论的应用.12、①③【解题分析】
①利用三角形的内角和定理以及正弦函数的单调性进行判断;②根据余弦函数的有界性可进行判断;③利用周期函数的定义,结合余弦函数的周期性进行判断;④根据互为反函数图象的对称性进行判断.【题目详解】①在中,若,则,则,由于正弦函数在区间上为增函数,所以,故命题①正确;②已知点,则函数,所以该函数图象上不存在一点,使得,故命题②错误;③函数的是周期函数,当时,,该函数的周期为.当时,,该函数的周期为.所以,函数的周期与有关,与无关,命题③正确;④设方程的解是,方程的解是,由,可得,由,可得,则可视为函数与直线交点的横坐标,可视为函数与直线交点的横坐标,如下图所示:联立,得,可得点,由于函数的图象与函数的图象关于直线对称,则直线与函数和函数图象的两个交点关于点对称,所以,命题④错误.故答案为:①③.【题目点拨】本题考查三角函数的周期、正弦函数单调性的应用、互为反函数图象的对称性的应用以及余弦函数有界性的应用,考查分析问题和解决问题的能力,属于中等题.13、【解题分析】
利用余弦定理表示出与,代入已知等式中,整理得到,再利用余弦定理表示出,将及的值代入用表示出,将表示出的与代入中计算,即可求出值.【题目详解】由题意,由余弦定理得,代入,得,整理得,所以,即,整理得,即,则,故答案为.【题目点拨】本题考查了解三角形的综合应用,高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.14、128【解题分析】
观察数阵可知:前行一共有个数,且第行的最后一个数为,且第行有个数,由此可推断出所在的位置.【题目详解】因为前行一共有个数,且第行的最后一个数为,又因为,所以在第行,且第45行最后数为,又因为第行有个数,,所以在第列,所以.故答案为:.【题目点拨】本题考查数列在数阵中的应用,着重考查推理能力,难度一般.分析数列在数阵中的应用问题,可从以下点分析问题:观察每一行数据个数与行号关系,同时注意每一行开始的数据或结尾数据,所有行数据的总个数,注意等差数列的求和公式的运用.15、7【解题分析】
根据数列的通项公式,求得数列的周期为4,利用规律计算,即可求解.【题目详解】由题意,数列的通项,可得,,得到数列是以4项为周期的形式,所以=.故答案为:7.【题目点拨】本题主要考查了数列的求和问题,其中解答中根据数列的通项公式求得数列的周期,以及各项的变化规律是解答的关键,属于基础题,着重考查了.16、1或;【解题分析】
要使最大,则最小.【题目详解】圆的标准方程为,圆心为,半径为.∵若的最大值为,∴,解得或.故答案为1或.【题目点拨】本题考查直线与圆的位置关系,解题思路是平面上对圆的张角问题,显然在点固定时,圆外的点作圆的两条切线,这两条切线间的夹角是最大角,而当点离圆越近时,这个又越大.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)2019年年产量为100百辆时,企业所获利润最大,最大利润为5800万元.【解题分析】
(1)先阅读题意,再分当时,当时,求函数解析式即可;(2)当时,利用配方法求二次函数的最大值,当时,利用均值不等式求函数的最大值,一定要注意取等的条件,再综合求分段函数的最大值即可.【题目详解】解:(1)由已知有当时,当时,,即,(2)当时,,当时,取最大值,当时,,当且仅当,即时取等号,又故2019年年产量为100百辆时,企业所获利润最大,最大利润为5800万元.【题目点拨】本题考查了函数的综合应用,重点考查了分段函数最值的求法,属中档题.18、(1)是公比为的等比数列,理由见解析;(2)【解题分析】
(1)由,当时,,即可得出结论.(2)由(1)可得:,可得,,可得,,即可得出.【题目详解】(1),则时,,时,为等比数列,公比为.(2)由(1)可得:,只需,()当为奇数时,恒成立,又单减,∴当为偶数时,恒成立,又单增,∴.【题目点拨】本题考查等比数列的定义通项公式与求和公式及其单调性,考查推理能力与计算能力,属于中档题.19、(1),;(2).【解题分析】
(1)首先把化成的型式,再根据三角函的单调性即可解决(2)根据(1)结果把代入可得A的大小,从而计算出B的大小,根据正弦定理以及面积公式即可解决。【题目详解】(1)因为,由,,得,,又,所以或,所以函数在上的递增区间为:,;(2)因为,∴,∴,∴,,∴,,∵,∴.∴,在三角形中由正弦定理得,∴,.【题目点拨】本题主要考查了三角函数问题以及解三角形问题。三角函数问题常考周期、单调性最值等,在解三角形中长考的有正弦定理、余弦定理以及面积公式。20、(1);(2)3.5【解题分析】试题分析:(1)建立直角坐标系,设圆一般方程,根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年全球及中国AI性别转换器行业头部企业市场占有率及排名调研报告
- 二零二四年汽车租赁服务合同
- 二零二五年度船舶维修配件质量检测与认证合同4篇
- 企业并购转让居间合同范本
- 油田物资运输劳务合同
- 2025年烧结台车行业深度研究分析报告
- 2025年眼镜机器行业深度研究分析报告
- 食品供应链安全监管合作协议
- 汽车零部件生产销售协议
- 2023-2029年中国快餐连锁行业市场发展监测及投资潜力预测报告
- 粘液腺肺癌病理报告
- 巡察档案培训课件
- 酒店人防管理制度
- 油田酸化工艺技术
- 上海高考英语词汇手册列表
- 移动商务内容运营(吴洪贵)任务五 其他内容类型的生产
- 上海石油化工股份有限公司6181乙二醇装置爆炸事故调查报告
- 家谱人物简介(优选12篇)
- 例说相机诱导在语文教学中的运用 相机诱导
- 浙江省绍兴市2023年中考科学试题(word版-含答案)
- 《核心素养下初中足球教学研究3700字(论文)》
评论
0/150
提交评论