2024届西藏拉萨市数学高一下期末学业质量监测模拟试题含解析_第1页
2024届西藏拉萨市数学高一下期末学业质量监测模拟试题含解析_第2页
2024届西藏拉萨市数学高一下期末学业质量监测模拟试题含解析_第3页
2024届西藏拉萨市数学高一下期末学业质量监测模拟试题含解析_第4页
2024届西藏拉萨市数学高一下期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届西藏拉萨市数学高一下期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,扇形的圆心角为,半径为1,则该扇形绕所在直线旋转一周得到的几何体的表面积为(

)A. B. C. D.2.若数列满足(,为常数),则称数列为“调和数列”.已知数列为调和数列,且,则的最大值是()A.50 B.100 C.150 D.2003.已知200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,时速在的汽车辆数为()A.8 B.80 C.65 D.704.在中,内角,,的对边分别为,,.若,则的形状是A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定5.已知向量,,若,共线,则实数()A. B. C. D.66.已知数列1,,,9是等差数列,数列1,,,,9是等比数列,则()A. B. C. D.7.若数列{an}是等比数列,且an>0,则数列也是等比数列.若数列是等差数列,可类比得到关于等差数列的一个性质为().A.是等差数列B.是等差数列C.是等差数列D.是等差数列8.下列大小关系正确的是()A.B.C.D.9.数列为等比数列,若,,数列的前项和为,则A. B. C.7 D.3110.执行如图所示的程序,已知的初始值为,则输出的的值是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.一组数据2,4,5,,7,9的众数是2,则这组数据的中位数是_________.12.若各项均为正数的等比数列,,则它的前项和为______.13.已知直线与相互垂直,且垂足为,则的值为______.14.5人排成一行合影,甲和乙不相邻的排法有______种.(用数字回答)15.计算:______.16.如图所示,已知,用表示.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆的圆心在轴上,且经过点,.(Ⅰ)求线段AB的垂直平分线方程;(Ⅱ)求圆的标准方程;(Ⅲ)过点的直线与圆相交于、两点,且,求直线的方程.18.设的内角所对应的边长分别是,且.(Ⅰ)当时,求的值;(Ⅱ)当的面积为时,求的值.19.已知的顶点,边上的高所在的直线方程为,为的中点,且所在的直线方程为.(1)求顶点的坐标;(2)求过点且在轴、轴上的截距相等的直线的方程.20.已知函数.(1)求函数的最小正周期;(2)求函数在区间上的值域.21.在中,已知,其中角所对的边分别为.求(1)求角的大小;(2)若,的面积为,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

以所在直线为旋转轴将整个图形旋转一周所得几何体是一个半球,利用球面的表面积公式及圆的表面积公式即可求得.【题目详解】由已知可得:以所在直线为旋转轴将整个图形旋转一周所得几何体是一个半球,其中半球的半径为1,故半球的表面积为:故答案为:C【题目点拨】本题主要考查了旋转体的概念,以及球的表面积的计算,其中解答中熟记旋转体的定义,以及球的表面积公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.2、B【解题分析】

根据调和数列定义知为等差数列,再由前20项的和为200知,最后根据基本不等式可求出的最大值。【题目详解】因为数列为调和数列,所以,即为等差数列又,又大于0所以【题目点拨】本题考查了新定义“调和数列”的性质、等差数列的性质及其前n项公式、基本不等式的性质,属于难题。3、B【解题分析】

先计算时速在的汽车频率,再乘200,。【题目详解】由图知:时速在的汽车频率为所以时速在的汽车辆数为,选B.【题目点拨】本题考查频率分布直方图,属于基础题。4、C【解题分析】

由正弦定理可推得,再由余弦定理计算最大边的余弦值即可判断三角形形状.【题目详解】因为,所以,设,,,则角为的最大角,由余弦定理可得,即,故是钝角三角形.【题目点拨】本题考查用正弦定理和余弦定理解三角形,属于基础题.5、C【解题分析】

利用向量平行的性质直接求解.【题目详解】向量,,共线,,解得实数.故选:.【题目点拨】本题主要考查向量平行的性质等基础知识,考查运算求解能力,是基础题.6、B【解题分析】

根据等差数列和等比数列性质可分别求得,,代入即可得到结果.【题目详解】由成等差数列得:由成等比数列得:,又与同号本题正确选项:【题目点拨】本题考查等差数列、等比数列性质的应用,易错点是忽略等比数列奇数项符号相同的特点,从而造成增根.7、B【解题分析】试题分析:本题是由等比数列与等差数列的相似性质,推出有关结论:由“等比”类比到“等差”,由“几何平均数”类比到“算数平均数”;所以,所得结论为是等差数列.考点:类比推理.8、C【解题分析】试题分析:因为,,,所以。故选C。考点:不等式的性质点评:对于指数函数和对数函数,若,则函数都为增函数;若,则函数都为减函数。9、A【解题分析】

先求等比数列通项公式,再根据等比数列求和公式求结果.【题目详解】数列为等比数列,,,,解得,,数列的前项和为,.故选.【题目点拨】本题考查等比数列通项公式与求和公式,考查基本分析求解能力,属基础题.10、C【解题分析】

第一次运行:,满足循环条件因而继续循环;接下来继续写出第二次、第三次运算,直至,然后输出的值.【题目详解】初始值第一次运行:,满足循环条件因而继续循环;第二次运行:,满足循环条件因而继续循环;第三次运行:,不满足循环条件因而继续循环,跳出循环;此时.故选:C【题目点拨】本题是一道关于循环结构的问题,需要借助循环结构的相关知识进行解答,需掌握循环结构的两种形式,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

根据众数的定义求出的值,再根据中位数的定义进行求解即可.【题目详解】因为一组数据2,4,5,,7,9的众数是2,所以,这一组数据从小到大排列为:2,2,4,5,7,9,因此这一组数据的中位数为:.故答案为:【题目点拨】本题考查了众数和中位数的定义,属于基础题.12、【解题分析】

利用等比数列的通项公式求出公比,由此能求出它的前项和.【题目详解】设各项均为正数的等比数列的公比为,由,得,且,解得,它的前项和为.故答案:.【题目点拨】本题考查等比数列的前项和的求法,考查等比数列的性质等基础知识,考查运算求解能力,属于基础题.13、【解题分析】

先由两直线垂直,可求出的值,将垂足点代入直线的方程可求出的点,再将垂足点代入直线的方程可求出的值,由此可计算出的值.【题目详解】,,解得,直线的方程为,即,由于点在直线上,,解得,将点的坐标代入直线的方程得,解得,因此,.故答案为:.【题目点拨】本题考查了由两直线垂直求参数,以及由两直线的公共点求参数,考查推理能力与计算能力,属于基础题.14、72【解题分析】

先对其中3个人进行全排列有种,再对甲和乙进行插空有种,利用乘法原理得到排法总数为.【题目详解】先对其中3个人进行全排列有种,再对甲和乙进行插空有种,利用乘法原理得到排法总数为种,故答案为72【题目点拨】本题考查排列、组合计数原理的应用,考查基本运算能力.15、【解题分析】

直接利用反三角函数运算法则写出结果即可.【题目详解】解:.故答案为:.【题目点拨】本题考查反三角函数的运算法则的应用,属于基础题.16、【解题分析】

可采用向量加法和减法公式的线性运算进行求解【题目详解】由,整理得【题目点拨】本题考查向量的线性运算,解题关键在于将所有向量通过向量的加法和减法公式转化成基底向量,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ);(Ⅲ)或.【解题分析】

(Ⅰ)利用垂直平分关系得到斜率及中点,从而得到结果;(Ⅱ)设圆的标准方程为,结合第一问可得结果;(Ⅲ)由题意可知:圆心到直线的距离为1,分类讨论可得结果.【题目详解】解:(Ⅰ)设的中点为,则.由圆的性质,得,所以,得.所以线段的垂直平分线的方程是.(II)设圆的标准方程为,其中,半径为().由圆的性质,圆心在直线上,化简得.所以圆心,,所以圆的标准方程为.(III)由(I)设为中点,则,得.圆心到直线的距离.(1)当的斜率不存在时,,此时,符合题意.(2)当的斜率存在时,设,即,由题意得,解得:.故直线的方程为,即.综上直线的方程或.【题目点拨】圆内一点为弦的中点时,则此点与圆心的连线和弦所在的直线垂直;解决圆的弦长有关问题,注意弦长一半、弦心距、半径构成的直角三角形的三边的勾股数之间的关系。18、(Ⅰ)(Ⅱ)【解题分析】

(Ⅰ)由得,再利用正弦定理即可求出(Ⅱ)由可得,再利用余弦定理即可求出.【题目详解】(Ⅰ)∵∴,由正弦定理可知:,∴(Ⅱ)∵∴由余弦定理得:∴,即则:故:【题目点拨】本题主要考查了正弦定理与余弦定理的应用,考查了推理能力与计算能力,属于中档题.19、(1)(2)或【解题分析】

(1)首先确定直线的斜率,从而得到直线的方程;因为点是直线与的交点,联立两条直线可求得点坐标;(2)设,利用中点坐标公式表示出;根据在直线上,在直线上,可构造方程组,求得点坐标;根据截距相等,可分为截距为和不为两种情况来分别求解出直线方程.【题目详解】(1)由已知得:直线的方程为:,即:由,解得:的坐标为(2)设,则则,解得:直线在轴、轴上的截距相等当直线经过原点时,设直线的方程为把点代入,得:,解得:此时直线的方程为:当直线不经过原点时,设直线的方程为把点代入,得:,解得:此时直线的方程为直线的方程为:或【题目点拨】本题考查直线交点、直线方程的求解问题,易错点是在已知截距相等的情况下,忽略截距为零的情况,造成丢根.20、(1);(2)【解题分析】

(1)由二倍角公式,并结合辅助角公式可得,再利用周期可求出答案;(2)由的范围,可求得的范围,进而可求出的范围,从而可求得的值域.【题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论