![2024届广西贵港市港南中学数学高一第二学期期末调研试题含解析_第1页](http://file4.renrendoc.com/view11/M02/08/09/wKhkGWWefRqAGMi_AAITszISY5I349.jpg)
![2024届广西贵港市港南中学数学高一第二学期期末调研试题含解析_第2页](http://file4.renrendoc.com/view11/M02/08/09/wKhkGWWefRqAGMi_AAITszISY5I3492.jpg)
![2024届广西贵港市港南中学数学高一第二学期期末调研试题含解析_第3页](http://file4.renrendoc.com/view11/M02/08/09/wKhkGWWefRqAGMi_AAITszISY5I3493.jpg)
![2024届广西贵港市港南中学数学高一第二学期期末调研试题含解析_第4页](http://file4.renrendoc.com/view11/M02/08/09/wKhkGWWefRqAGMi_AAITszISY5I3494.jpg)
![2024届广西贵港市港南中学数学高一第二学期期末调研试题含解析_第5页](http://file4.renrendoc.com/view11/M02/08/09/wKhkGWWefRqAGMi_AAITszISY5I3495.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广西贵港市港南中学数学高一第二学期期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.办公室装修一新,放些植物花草可以清除异味,公司提供绿萝、文竹、碧玉、芦荟4种植物供员工选择,每个员工任意选择2种,则员工甲和乙选择的植物全不同的概率为:A. B. C. D.2.设等比数列的公比为,其前项的积为,并且满足条件:;给出下列论:①;②;③值是中最大值;④使成立的最大自然数等于198.其中正确的结论是()A.①③ B.①④ C.②③ D.②④3.在0°到360°范围内,与角-130°终边相同的角是()A.50° B.130° C.170° D.230°4.在平面直角坐标系中,为坐标原点,为单位圆上一点,以轴为始边,为终边的角为,,若将绕点顺时针旋转至,则点的坐标为()A. B. C. D.5.已知m个数的平均数为a,n个数的平均数为b,则这个数的平均数为()A. B. C. D.6.已知,,是三条不同的直线,,是两个不同的平面,则下列命题正确的是A.若,,,,,则B.若,,,,则C.若,,,,,则D.若,,,则7.在中,(,,分别为角、、的对边),则的形状为()A.等边三角形 B.直角三角形C.等腰三角形或直角三角形 D.等腰直角三角形8.函数(且)的图像是下列图像中的()A. B.C. D.9.已知,则()A. B. C. D.10.已知不等式的解集为,则不等式的解集为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在直角梯形.中,,分别为的中点,以为圆心,为半径的圆交于,点在上运动(如图).若,其中,则的最大值是________.12.若直线的倾斜角为,则______.13.在等比数列中,,,则______________.14.数列满足,,,则数列的通项公式______.15.已知六棱锥的底面是正六边形,平面,.则下列命题中正确的有_____.(填序号)①PB⊥AD;②平面PAB⊥平面PAE;③BC∥平面PAE;④直线PD与平面ABC所成的角为45°.16.已知一组数1,2,m,6,7的平均数为4,则这组数的方差为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列是以为首项,为公比的等比数列,(1)求数列的通项公式;(2)若,求数列的前项和.18.已知向量,,.(1)若,求实数的值;(2)若,求向量与的夹角.19.已知扇形的半径为3,面积为9,则该扇形的弧长为___________.20.在中,角的对边分别是,已知,,.(1)求的值;(2)若角为锐角,求的值及的面积.21.在△ABC中,角A,B,C的对边分别为a,b,c,且a2+c2﹣b2=mac,其中m∈R.(1)若m=1,a=1,c=,求△ABC的面积;(2)若m=,A=2B,a=,求b.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
从公司提供的4中植物中任意选择2种,求得员工甲和乙共有种选法,再由任选2种有种,得到员工甲和乙选择的植物全不同有种选法,利用古典概型的概率计算公式,即可求解.【题目详解】由题意,从公司提供绿萝、文竹、碧玉、芦荟4种植物每个员工任意选择2种,则员工甲和乙共有种不同的选法,又从公司提供绿萝、文竹、碧玉、芦荟4种植物中,任选2种,共有种选法,则员工甲和乙选择的植物全不同,共有种不同的选法,所以员工甲和乙选择的植物全不同的概率为,故选A.【题目点拨】本题主要考查了古典概型及其概率的计算,以及排列、组合的应用,其中解答中认真审题,合理利用排列、组合求得基本事件的个数,利用古典概型的概率计算公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.2、B【解题分析】
利用等比数列的性质及等比数列的通项公式判断①正确;利用等比数列的性质及不等式的性质判断②错误;利用等比数列的性质判断③错误;利用等比数列的性质判断④正确,,从而得出结论.【题目详解】解:由可得又即由,即,结合,所以,,即,,即,即①正确;又,所以,即,即②错误;因为,即值是中最大值,即③错误;由,即,即,又,即,即④正确,综上可得正确的结论是①④,故选:B.【题目点拨】本题考查了等比数列的性质及不等式的性质,重点考查了运算能力,属中档题.3、D【解题分析】
先表示与角-130°终边相同的角,再在0°到360°范围内确定具体角,最后作选择.【题目详解】因为与角-130°终边相同的角为,所以,因此选D.【题目点拨】本题考查终边相同的角,考查基本分析判断能力,属基本题.4、C【解题分析】
由题意利用任意角的三角函数的定义,诱导公式,求得点的坐标.【题目详解】为单位圆上一点,以轴为始边,为终边的角为,,若将绕点顺时针旋转至,则点的横坐标为,点的纵坐标为,故点的坐标为.故选C.【题目点拨】本题主要考查任意角的三角函数的定义,诱导公式,考查基本的运算求解能力.5、D【解题分析】
根据平均数的定义求解.【题目详解】两组数的总数为:则这个数的平均数为:故选:D【题目点拨】本题主要考查了平均数的定义,还考查了运算求解能力,属于基础题.6、D【解题分析】
逐一分析选项,得到答案.【题目详解】A.根据条件可知,若,不能推出;B.若,就不能推出;C.条件中没有,所以不能推出;D.因为,,所以,因为,所以.【题目点拨】本题考查了面面平行的判断,属于基础题型,需要具有空间想象能力,以及逻辑推理能力.7、B【解题分析】
利用二倍角公式,正弦定理,结合和差公式化简等式得到,得到答案.【题目详解】故答案选B【题目点拨】本题考查了正弦定理,和差公式,意在考查学生的综合应用能力.8、C【解题分析】
将函数表示为分段函数的形式,由此确定函数图像.【题目详解】依题意,.由此判断出正确的选项为C.故选C.【题目点拨】本小题主要考查三角函数图像的识别,考查分段函数解析式的求法,考查同角三角函数的基本关系式,属于基础题.9、C【解题分析】
根据特殊值排除A,B选项,根据单调性选出C,D选项中的正确选项.【题目详解】当时,,故A,B两个选项错误.由于,故,所以C选项正确,D选项错误.故本小题选C.【题目点拨】本小题主要考查三角函数值,考查对数函数和指数函数的单调性,属于基础题.10、B【解题分析】
首先根据题意得到,为方程的根,再解出的值带入不等式即可.【题目详解】有题知:,为方程的根.所以,解得.所以,解得:或.故选:B【题目点拨】本题主要考查二次不等式的求法,同时考查了学生的计算能力,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
建立直角坐标系,设,根据,表示出,结合三角函数相关知识即可求得最大值.【题目详解】建立如图所示的平面直角坐标系:,分别为的中点,,以为圆心,为半径的圆交于,点在上运动,设,,即,,所以,两式相加:,即,要取得最大值,即当时,故答案为:【题目点拨】此题考查平面向量线性运算,处理平面几何相关问题,涉及三角换元,转化为求解三角函数的最值问题.12、【解题分析】
首先利用直线方程求出直线斜率,通过斜率求出倾斜角.【题目详解】由题知直线方程为,所以直线的斜率,又因为倾斜角,所以倾斜角.故答案为:.【题目点拨】本题主要考查了直线倾斜角与直线斜率的关系,属于基础题.13、1【解题分析】
根据已知两项求出数列的公比,然后根据等比数列的通项公式进行求解即可.【题目详解】∵a1=1,a5=4∴公比∴∴该等比数列的通项公式a3=11=1故答案为:1.【题目点拨】本题主要考查了等比数列的通项公式,一般利用基本量的思想,属于基础题.14、【解题分析】
由题意得出,利用累加法可求出.【题目详解】数列满足,,,,因此,.故答案为:.【题目点拨】本题考查利用累加法求数列的通项,解题时要注意累加法对数列递推公式的要求,考查计算能力,属于中等题.15、②④【解题分析】
利用题中条件,逐一分析答案,通过排除和筛选,得到正确答案.【题目详解】∵AD与PB在平面的射影AB不垂直,∴①不成立;∵PA⊥平面ABC,∴PA⊥AB,在正六边形ABCDEF中,AB⊥AE,PAAE=A,∴AB⊥平面PAE,且AB面PAB,∴平面PAB⊥平面PAE,故②成立;∵BC∥AD∥平面PAD,平面PAD平面PAE=PA,∴直线BC∥平面PAE也不成立,即③不成立.在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,故④成立.故答案为②④.【题目点拨】本题考查命题真假的判断,解题时要注意直线与平面成的角、直线与平面垂直的性质的合理运用,属于中档题.16、【解题分析】
先根据平均数计算出的值,再根据方差的计算公式计算出这组数的方差.【题目详解】依题意.所以方差为.故答案为:.【题目点拨】本小题主要考查平均数和方差的有关计算,考查运算求解能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】
(1)按等比数列的概念直接求解即可;(2)先求出的表达式,再利用裂项相消法即可求得数列的前项和.【题目详解】(1)由等比数列通项公式得:(2)由(1)可得:【题目点拨】本题主要考查数列的通项公式问题及利用裂项相消法求和的问题,属常规考题.18、(1);(2)【解题分析】
(1)由向量平行的坐标表示可构造方程求得结果;(2)利用向量夹角公式可求得,进而根据向量夹角的范围求得结果.【题目详解】(1),解得:(2)又【题目点拨】本题考查平面向量共线的坐标表示、向量夹角的求解问题;考查学生对于平面向量坐标运算、数量积运算掌握的熟练程度,属于基础应用问题.19、6【解题分析】
直接利用扇形的面积公式,即可得到本题答案.【题目详解】因为扇形的半径,扇形的面积,由,得,所以该扇形的弧长为6.故答案为:6【题目点拨】本题主要考查扇形的面积公式的应用.20、(1);(2),.【解题分析】试题分析:(1)根据题意和正弦定理求出a的值;
(2)由二倍角的余弦公式变形求出,由的范围和平方关系求出,由余弦定理列出方程求出的值,代入三角形的面积公式求出的面积.试题解析:(1)因为,,由正弦定理,得.(2)因为,且,所以,.由余弦定理,得,解得或(舍),所以.21、(1);(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物联网技术在现代物流中的应用与挑战
- 现代城市住宅区的绿色规划与实践
- 现代人如何通过饮食改善肠胃问题
- 国庆节活动方案百米画
- 牙科患者需求与商业价值挖掘
- 2024-2025学年新教材高中英语 Unit 6 Earth first预习 新知早知道2说课稿 外研版必修第二册
- 12《示儿》说课稿-2024-2025学年五年级上册语文统编版
- 《11~20的认识-11~20的认识》(说课稿)-2024-2025学年一年级上册数学人教版
- 2024-2025学年新教材高中地理 第一章 人口 第一节 人口分布(2)说课稿 新人教版必修2
- 1学会尊重-《每个人都应得到尊重》(说课稿)2023-2024学年统编版道德与法治四年级下册
- 2023~2024学年二年级下册语文期末模考试卷·创意情境 统编版
- 2024年北师大版六年级下册数学期末测试卷(各地真题)
- 2024年江苏农牧科技职业学院单招职业适应性测试题库附答案
- 经理层年度任期经营业绩考核及薪酬办法
- 2024年高考英语新闻报道阅读理解训练历年真题
- 2024高考物理广东卷押题模拟含解析
- 青少年农业科普馆建设方案
- 新测绘法解读
- 提高感染性休克集束化治疗达标率
- 译林版七年级下册英语单词默写表
- 人教版五年级上册数学简便计算大全600题及答案
评论
0/150
提交评论