版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届吉林省高中数学高一第二学期期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在正方体中,直线与直线所成角是()A. B. C. D.2.的值()A.小于0 B.大于0 C.等于0 D.不小于03.中,角所对的边分别为,已知向量,,且共线,则的形状是()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形4.已知Sn是等差数列{an}的前n项和,a2+a4+a6=12,则S7=()A.20 B.28 C.36 D.45.已知直线与直线垂直,则()A. B. C.或 D.或6.已知向量,若,则的最小值为().A.12 B. C.16 D.7.设变量,满足约束条件,则目标函数的最大值为()A. B. C. D.8.将正整数排列如下:则图中数2020出现在()A.第64行第3列 B.第64行4列 C.第65行3列 D.第65行4列9.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A. B. C. D.10.角的终边过点,则等于()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最大值为______.12.若则____________13.已知直线与轴、轴相交于两点,点在圆上移动,则面积的最大值和最小值之差为.14.数列的前项和为,,且(),记,则的值是________.15.记为等差数列的前项和,若,则___________.16.设数列的通项公式,则数列的前20项和为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)设,求满足的实数的值;(2)若为上的奇函数,试求函数的反函数.18.在等差数列{an}中,a1=1,公差d≠0,且a1,a2,a5是等比数列{bn}的前三项.(1)求数列{an}和{bn}的通项公式;(2)设cn=an·bn,求数列{cn}的前n项和Sn.19.一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.20.从甲、乙、丙、丁四个人中选两名代表,求:(1)甲被选中的概率;(2)丁没被选中的概率.21.已知曲线上的任意一点到两定点、距离之和为,直线交曲线于两点,为坐标原点.(1)求曲线的方程;(2)若不过点且不平行于坐标轴,记线段的中点为,求证:直线的斜率与的斜率的乘积为定值;(3)若直线过点,求面积的最大值,以及取最大值时直线的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
直线与直线所成角为,为等边三角形,得到答案.【题目详解】如图所示:连接易知:直线与直线所成角为为等边三角形,夹角为故答案选B【题目点拨】本题考查了异面直线夹角,意在考查学生的空间想象能力.2、A【解题分析】
确定各个角的范围,由三角函数定义可确定正负.【题目详解】∵,∴,,,∴.故选:A.【题目点拨】本题考查各象限角三角函数的符号,掌握三角函数定义是解题关键.3、D【解题分析】
由向量共线的坐标表示得一等式,然后由正弦定理化边为角,利用诱导公式得展开后代入原式化简得,分类讨论得解.【题目详解】∵共线,∴,即,,,整理得,所以或,或或(舍去).∴三角形为直角三角形或等腰三角形.故选:D.【题目点拨】本题考查三角形形状的判断,考查向量共线的坐标表示,考查正弦定理,两角和的正弦公式,考查三角函数性质.解题时不能随便约分漏解.4、B【解题分析】
由等差数列的性质计算.【题目详解】由题意,,∴.故选B.【题目点拨】本题考查等差数列的性质,灵活运用等差数列的性质可以很快速地求解等差数列的问题.在等差数列中,正整数满足,则,特别地若,则;.5、D【解题分析】
由垂直,可得,即可求出的值.【题目详解】直线与直线垂直,,解得或.故选D.【题目点拨】对于直线:和直线:,①;②.6、B【解题分析】
根据向量的平行关系,得到间的等量关系,再根据“”的妙用结合基本不等式即可求解出的最小值.【题目详解】因为,所以,所以,又因为,取等号时即,所以.故选:B.【题目点拨】本题考查利用基本不等式求解最小值,难度一般.本题是基本不等式中的常见类型问题:已知,则,取等号时.7、C【解题分析】
作出可行域,利用平移法即可求出.【题目详解】作出不等式组表示的平面区域,如图所示:当直线平移至经过直线与直线的交点时,取得最大值,.故选:C.【题目点拨】本题主要考查简单线性规划问题的解法应用,属于基础题.8、B【解题分析】
根据题意,构造数列,利用数列求和推出的位置.【题目详解】根据已知,第行有个数,设数列为行数的数列,则,即第行有个数,第行有个数,……,第行有个数,所以,第行到第行数的总个数,当时,数的总个数,所以,为时的数,即行的数为:,,,,……,所以,为行第列.故选:B.【题目点拨】本题考查数列的应用,构造数列,利用数列知识求解很关键,属于中档题.9、B【解题分析】
分析:作图,D为MO与球的交点,点M为三角形ABC的中心,判断出当平面时,三棱锥体积最大,然后进行计算可得.详解:如图所示,点M为三角形ABC的中心,E为AC中点,当平面时,三棱锥体积最大此时,,点M为三角形ABC的中心中,有故选B.点睛:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当平面时,三棱锥体积最大很关键,由M为三角形ABC的重心,计算得到,再由勾股定理得到OM,进而得到结果,属于较难题型.10、B【解题分析】由三角函数的定义知,x=-1,y=2,r==,∴sinα==.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
设,,,则,,可得,再根据正弦函数的定义域和值域,求得函数的最值.【题目详解】解:函数,设,,则,,,,故当,即时,函数,故故答案为:;【题目点拨】本题主要考查求函数的值域,正弦函数的定义域和值域,体现了转化的数学思想,属于基础题.12、【解题分析】因为,所以=.故填.13、15【解题分析】
解:设作出与已知直线平行且与圆相切的直线,
切点分别为,如图所示
则动点C在圆上移动时,若C与点重合时,
△ABC面积达到最小值;而C与点重合时,△ABC面积达到最大值
∵直线3x+4y−12=0与x轴、y轴相交于A(4,0)、B(0,3)两点
可得∴△ABC面积的最大值和最小值之差为
,
其中分别为点、点到直线AB的距离
∵是圆(x−5)2+(y−6)2=9的两条平行切线与圆的切点
∴点、点到直线AB的距离之差等于圆的直径,即
因此△ABC面积的最大值和最小值之差为
故答案为:1514、3【解题分析】
由已知条件推导出是首项为,公比为的等比数列,由此能求出的值.【题目详解】解:因为数列的前项和为,,且(),,.即,.是首项为,公比为的等比数列,故答案为:【题目点拨】本题考查数列的前项和的求法,解题时要注意等比数列的性质的合理应用,属于中档题.15、100【解题分析】
根据题意可求出首项和公差,进而求得结果.【题目详解】得【题目点拨】本题考点为等差数列的求和,为基础题目,利用基本量思想解题即可,充分记牢等差数列的求和公式是解题的关键.16、【解题分析】
对去绝对值,得,再求得的前项和,代入=20即可求解【题目详解】由题的前n项和为的前20项和,代入可得.故答案为:260【题目点拨】本题考查等差数列的前项和,去绝对值是关键,考查计算能力,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)把代入函数解析式,代入方程即可求解.(2)由函数奇偶性得,然后求得的解析式,分段求解反函数即可.【题目详解】(1)当时,,由,得,即,解得.(2)为上的奇函数,,则.,由,,得,;由,,得,.函数的反函数为.【题目点拨】本题主要考查了函数的解析式及求法,考查了反函数的求法,属于中档题.18、(1)bn=3n-1;(2)Sn=(n-1)·3n+1【解题分析】
(1)由a1,a2,a5是等比数列{bn}的前三项得,a22=a1·a5⇒(a1+d)2=a1·(a1+4d)··⇒a12+2a1d+d2=a12+4a1d⇒d2=2a1d,又d≠0,所以d=2a1=2,从而an=a1+(n-1)d=2n-1,则b1=a1=1,b2=a2=3,则等比数列{bn}的公比q=3,从而bn=3n-1(2)由(1)得,cn=an·bn=(2n-1)·3n-1,则Sn=1·1+3·3+5·32+7·33+…+(2n-1)·3n-1①3Sn=1·3+3·32+5·33+…+(2n-3)·3n-1+(2n-1)·3n②①-②得,-2Sn=1·1+2·3+2·32+2·33+…+2·3n-1-(2n-1)·3n=1+2×-(2n-1)·3n=-2(n-1)·3n-2··则Sn=(n-1)·3n+1.19、(1)取出球为红球或黑球的概率为(2)取出球为红球或黑球或白球的概率为【解题分析】试题分析:(1)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球,满足条件的事件是取出的球是红球或黑球,根据古典概型和互斥事件的概率公式得到结果;(2)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球,满足条件的事件是取出的一球是红球或黑球或白球,根据古典概型公式得到结果试题解析:(1)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球共有12种结果;满足条件的事件是取出的球是红球或黑球共有9种结果,∴概率为.(2)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球共有12种结果;满足条件的事件是取出的一球是红球或黑球或白球共有11种结果,∴概率为.即取出的1球是红球或黑球的概率为;取出的1球是红球或黑球或白球的概率为.考点:等可能事件的概率20、(1);(2).【解题分析】
(1)先确定从甲、乙、丙、丁四个人中选两名代表总事件数,再确定甲被选中的事件数,最后根据古典概型概率公式求概率(2)先确定从甲、乙、丙、丁四个人中选两名代表总事件数,再确定丁没被选中的事件数,最后根据古典概型概率公式求概率.【题目详解】(1)从甲、乙、丙、丁四个人中选两名代表共有:甲乙,甲丙,甲丁,乙丙,乙丁、丙丁共6种基本事件,其中甲被选中包括甲乙,甲丙,甲丁三种基本事件,所以甲被选中的概率为.(2)丁没被选中包括甲乙,甲丙,乙丙三种基本事件,所以丁没被选中的概率为.点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.21、(1)(2)证明见解析;(3)或【解题分析】
(1)利用椭圆的定义可知曲线为的椭圆,直接写出椭圆的方程.(2)设直线,设,联立直线方程与椭圆方程,通过韦达定理求解KOM,然后推出直线OM的斜率与的斜率的乘积为定值.(3)设直线方程是与椭圆方程联立
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44808.2-2024人类工效学无障碍设计第2部分:考虑颜色视觉随年龄变化的颜色组合方法
- Ginisortamab-Mouse-IgG1-生命科学试剂-MCE-5731
- CDDP-PEG-Cy3-生命科学试剂-MCE-6481
- 20-Hydroxylucidenic-acid-E2-生命科学试剂-MCE-8519
- 2-Dodecylfuran-生命科学试剂-MCE-5142
- 二零二五年度绿色建筑物业费减免执行合同
- 二零二五年度校园教师聘用与管理合作协议
- 二零二五年度股权赠与合同:公司股东权益转移与公司股权结构调整
- 2025年度篮球运动员与俱乐部伤病赔偿合同
- 2025年度影视基地装修半包工程合同
- 人教版数学六年级下册全册核心素养目标教学设计
- 构建绿色低碳的城市生态系统
- 春节习俗中的传统节日服饰与装扮
- 儿童编程课件
- (完整word版)英语四级单词大全
- 武装押运操作规程完整
- 混合动力汽车构造与检修(高职新能源汽车专业)PPT完整全套教学课件
- 薪酬专员岗位月度KPI绩效考核表
- 技能大赛题库(空分)
- 污水处理厂设备的操作规程(完整版)
- GB/T 28419-2012风沙源区草原沙化遥感监测技术导则
评论
0/150
提交评论