




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省株洲市2024届高一数学第二学期期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,且,,则()A. B. C. D.2.在区间[–1,1]上任取两个数x和y,则x2+y2≥1的概率为()A. B.C. D.3.在等腰梯形ABCD中,,点E是线段BC的中点,若,则A. B. C. D.4.已知,则的值等于()A. B. C. D.5.若,,则的值是()A. B. C. D.6.设点,,若直线与线段没有交点,则的取值范围是A. B. C. D.7..在各项均为正数的等比数列中,若,则…等于()A.5 B.6 C.7 D.88.若关于x的不等式x-1-x-2≥A.0,1 B.-1,0 C.-∞,-1∪0,9.函数的图像关于直线对称,则的最小值为()A. B. C. D.110.已知圆,直线,点在直线上.若存在圆上的点,使得(为坐标原点),则的取值范围是A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在四面体ABCD中,平面ABC,,,若四面体ABCD的外接球的表面积为,则四面体ABCD的体积为_______.12.已知函数,则______.13.把二进制数1111(2)化为十进制数是______.14.已知,若,则______.15.若数据的平均数为,则____________.16.已知数列的通项公式,则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在等差数列中,已知,.(1)求数列的前项和的最大值;(2)若,求数列前项和.18.在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足S=(a2+c2﹣b2).(1)求角B的大小;(2)若边b=,求a+c的取值范围.19.已知向量,向量为单位向量,向量与的夹角为.(1)若向量与向量共线,求;(2)若与垂直,求.20.某科研小组对冬季昼夜温差大小与某反季节作物种子发芽多少之间的关系进行分析,分别记录了每天昼夜温差和每100颗种子的发芽数,其中5天的数据如下,该小组的研究方案是:先从这5组数据中选取3组求线性回归方程,再用方程对其余的2组数据进行检验.日期第1天第2天第3天第4天第5天温度(℃)101113128发芽数(颗)2326322616(1)求余下的2组数据恰好是不相邻2天数据的概率;(2)若选取的是第2、3、4天的数据,求关于的线性回归方程;(3)若由线性回归方程得到的估计数据与2组检验数据的误差均不超过1颗,则认为得到的线性回归方程是可靠的,请问(2)中所得的线性回归方程是否可靠?(参考公式;线性回归方程中系数计算公式:,,其中、表示样本的平均值)21.已知,求(1)(2)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
利用两角和差的正弦公式将β=α-(α﹣β)进行转化求解即可.【题目详解】β=α-(α﹣β),∵<α,<β,β<,∴α,∵sin()0,∴<0,则cos(),∵sinα,∴cosα,则sinβ=sin[α-(α﹣β)]=sinαcos(α﹣β)-cosαsin(α﹣β)(),故选B【题目点拨】本题主要考查利用两角和差的正弦公式,同角三角函数基本关系,将β=α-(α﹣β)进行转化是解决本题的关键,是基础题2、A【解题分析】由题意知,所有的基本事件构成的平面区域为,其面积为.设“在区间[-1,1]上任选两个数,则”为事件A,则事件A包含的基本事件构成的平面区域为,其面积为.由几何概型概率公式可得所求概率为.选A.3、B【解题分析】
利用平面向量的几何运算,将用和表示,根据平面向量基本定理得,的值,即可求解.【题目详解】取AB的中点F,连CF,则四边形AFCD是平行四边形,所以,且因为,,,∴故选B.【题目点拨】本题主要考查了平面向量的基本定理的应用,其中解答中根据平面向量的基本定理,将用和进行表示,求得的值是解答的关键,着重考查了推理与运算能力,属于基础题.4、B【解题分析】.5、B【解题分析】,,,故选B.6、B【解题分析】直线恒过点且斜率为由图可知,且故选点睛:本题主要考查了两条直线的交点坐标,直线恒过点,直线与线段没有交点转化为过定点的直线与线段无公共点,作出图象,由图求解即可.7、C【解题分析】因为数列为等比数列,所以,所以.8、D【解题分析】x-1-x-2=x-1-∵关于x的不等式x-1-∴a2+a-1>1,即解得a>1或∴实数a的取值范围为-∞,-2∪9、C【解题分析】
的对称轴为,化简得到得到答案.【题目详解】对称轴为:当时,有最小值为故答案选C【题目点拨】本题考查了三角函数的对称轴,将对称轴表示出来是解题的关键,意在考查学生对于三角函数性质的灵活运用.10、B【解题分析】
根据条件若存在圆C上的点Q,使得为坐标原点),等价即可,求出不等式的解集即可得到的范围【题目详解】圆O外有一点P,圆上有一动点Q,在PQ与圆相切时取得最大值.
如果OP变长,那么可以获得的最大值将变小.可以得知,当,且PQ与圆相切时,,
而当时,Q在圆上任意移动,存在恒成立.
因此满足,就能保证一定存在点Q,使得,否则,这样的点Q是不存在的,
点在直线上,,即
,
,
计算得出,,
的取值范围是,
故选B.考点:正弦定理、直线与圆的位置关系.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
易得四面体为长方体的一角,再根据长方体体对角线等于外接球直径,再利用对角线公式求解即可.【题目详解】因为四面体中,平面,且,.故四面体是以为一个顶点的长方体一角.设则因为四面体的外接球的表面积为,设其半径为,故.解得.故四面体的体积.故答案为:【题目点拨】本题主要考查了长方体一角的四面体的外接球有关问题,需要注意长方体体对角线等于外接球直径.属于中档题.12、【解题分析】
根据题意令f(x)=,求出x的值,即可得出f﹣1()的值.【题目详解】令f(x)=+arcsin(2x)=,得arcsin(2x)=﹣,∴2x=﹣,解得x=﹣,∴f﹣1()=﹣.故答案为:﹣.【题目点拨】本题考查了反函数以及反正弦函数的应用问题,属于基础题.13、.【解题分析】
由二进制数的定义可将化为十进制数.【题目详解】由二进制数的定义可得,故答案为:.【题目点拨】本题考查二进制数化十进制数,考查二进制数的定义,考查计算能力,属于基础题.14、【解题分析】
由条件利用正切函数的单调性直接求出的值.【题目详解】解:函数在上单调递增,且,若,则,故答案为:.【题目点拨】本题主要考查正切函数的单调性,根据三角函数的值求角,属于基础题.15、【解题分析】
根据求平均数的公式,得到关于的方程,求得.【题目详解】由题意得:,解得:,故填:.【题目点拨】本题考查求一组数据的平均数,考查基本数据处理能力.16、【解题分析】
本题考查的是数列求和,关键是构造新数列,求和时先考虑比较特殊的前两项,剩余7项按照等差数列求和即可.【题目详解】令,则所求式子为的前9项和.其中,,从第三项起,是一个以1为首项,4为公差的等差数列,,故答案为1.【题目点拨】本题考查的是数列求和,关键在于把所求式子转换成为等差数列的前项和,另外,带有绝对值的数列在求和时要注意里面的特殊项.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)9;(2)【解题分析】
(1)利用等差数列公式得到,当时,最大为9(2)讨论和两种情况,分别计算得到答案.【题目详解】(1),又,所以令,得所以当时,最大为.(2)由(1)可知,当时,,所以当时,,所以.综上所述:【题目点拨】本题考查了等差数列的通项公式,前N项和最大值,绝对值求和,找到通项公式的正负分界处是解题的关键,意在考查学生的计算能力和综合应用能力.18、(1)B=60°(2)【解题分析】
(1)由三角形的面积公式,余弦定理化简已知等式可求tanB的值,结合B的范围可求B的值.(2)由正弦定理,三角函数恒等变换的应用可求a+csin(A),由题意可求范围A∈(,),根据正弦函数的图象和性质即可求解.【题目详解】(1)在△ABC中,∵S(a2+c2﹣b2)acsinB,cosB.∴tanB,∵B∈(0,π),∴B.(2)∵B,b,∴由正弦定理可得1,可得:a=sinA,c=sinC,∴a+c=sinA+sinC=sinA+sin(A)=sinAcosAsinAsin(A),∵A∈(0,),A∈(,),∴sin(A)∈(,1],∴a+csin(A)∈(,].【题目点拨】本题考查了正弦定理、余弦定理、三角形面积计算公式及三角函数恒等变换的应用,考查了推理能力与计算能力,属于中档题.19、(1)(2)【解题分析】
(1)共线向量夹角为0°或180°,由此根据定义可求得两向量数量积.(2)由向量垂直转化为向量的当量积为0,从而求得,也就求得,再由余弦的二倍角公式可得.【题目详解】法一(1),故或向量,向量法二(1),设即或或(2)法一:依题意,,故法二:设即,又或【题目点拨】本题考查向量共线,向量垂直与数量积的关系,考查平面向量的数量积运算.解题时按向量数量积的定义计算即可.20、(1);(2);(3)线性回归方程是可靠的.【解题分析】
(1)用列举法求出基本事件数,计算所求的概率值;(2)由已知数据求得与,则线性回归方程可求;(3)利用回归方程计算与8时的值,再由已知数据作差取绝对值,与1比较大小得结论.【题目详解】解:(1)设“余下的2组数据恰好是不相邻2天数据为事件”,从5组数据中选取3组数据,余下的2组数据共10种情况:,,,,,,,,,.其中事件的有6种,;(2)由数据求得,,且,.代入公
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 文化创意产品研发资金申请2025年政策扶持与产业升级策略报告
- 2025年新能源汽车废旧电池回收处理技术及案例分析报告
- 2025年生物科技行业可持续发展目标(SDGs)实践与产业融合报告
- 煤炭清洁高效燃烧技术在煤炭洗选加工中的应用与发展报告
- 医疗器械临床试验质量管理与规范化2025年发展趋势研究报告
- 2025年建筑信息模型(BIM)在施工全过程精细化管理中的应用策略报告
- 工业互联网平台量子密钥分发技术在智慧医疗领域的应用与挑战报告
- 2025年电商平台内容营销与种草经济产业链研究报告
- 深度解析:2025年工业互联网平台AR交互技术在制造领域的应用创新报告
- 绿色环保产业资金申请政策变化与应对策略报告2025
- 《古文观止解读》课件
- 道德与法治三年级下册知识点归纳
- 广东省江门市2023-2024学年高二下学期7月期末考试 英语 含解析
- 临床专业认证
- 医美美学设计培训
- 2024年中考模拟试卷物理(江苏南通卷)
- 定额〔2025〕2号文-关于发布2020版电网技术改造及检修工程概预算定额2024年下半年价格
- 2025年部编版道德与法治小学三年级下册全册教案(含教学计划)
- 肠系膜上动脉夹层教学教材
- DG-TJ 08-2048-2024 民用建筑电气防火设计标准
- 刑事诉讼法学习题及答案
评论
0/150
提交评论