




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省蚌埠市重点中学2024届数学高一第二学期期末学业质量监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设数列是公差不为零的等差数列,它的前项和为,且、、成等比数列,则等于()A. B. C. D.2.若,,,设,,且,则的值为()A.0 B.3 C.15 D.183.下列关于函数()的叙述,正确的是()A.在上单调递增,在上单调递减B.值域为C.图像关于点中心对称D.不等式的解集为4.化简的结果是()A. B. C. D.5.已知是定义在上的奇函数,当时,,那么不等式的解集是()A. B.C. D.6.圆心坐标为,半径长为2的圆的标准方程是()A. B.C. D.7.设等差数列的前n项和为,若,则()A.3 B.4 C.5 D.68.已知向量a=(1,-1),bA.-1 B.0 C.1 D.29.在中,角的对边分别为,且,,,则的周长为()A. B. C. D.10.一枚骰子连续投两次,则两次向上点数均为1的概率是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则的值为__________.12.函数在的值域是__________________.13.设数列满足,,,,______.14.中,,,,则________.15.半径为的圆上,弧长为的弧所对圆心角的弧度数为________.16.已知一个扇形的周长为4,则扇形面积的最大值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.李克强总理在2018年政府工作报告指出,要加快建设创新型国家,把握世界新一轮科技革命和产业变革大势,深入实施创新驱动发展战略,不断增强经济创新力和竞争力.某手机生产企业积极响应政府号召,大力研发新产品,争创世界名牌.为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到一组销售数据,如表所示:单价(千元)销量(百件)已知.(1)若变量具有线性相关关系,求产品销量(百件)关于试销单价(千元)的线性回归方程;(2)用(1)中所求的线性回归方程得到与对应的产品销量的估计值.(参考公式:线性回归方程中的估计值分别为)18.已知直线,,是三条不同的直线,其中.(1)求证:直线恒过定点,并求出该点的坐标;(2)若以,的交点为圆心,为半径的圆与直线相交于两点,求的最小值.19.(Ⅰ)已知直线过点且与直线垂直,求直线的方程;(Ⅱ)求与直线的距离为的直线方程.20.如图,已知平面,为矩形,分别为的中点,.(1)求证:平面;(2)求证:面平面;(3)求点到平面的距离.21.已知函数.(1)证明函数在定义域上单调递增;(2)求函数的值域;(3)令,讨论函数零点的个数.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
设等差数列的公差为,根据得出与的等量关系,即可计算出的值.【题目详解】设等差数列的公差为,由于、、成等比数列,则有,所以,,化简得,因此,.故选:A.【题目点拨】本题考查等差数列前项和中基本量的计算,解题的关键就是结合题意得出首项与公差的等量关系,考查计算能力,属于基础题.2、B【解题分析】
首先分别求出向量,然后再用两向量平行的坐标表示,最后求值.【题目详解】,,当时,,解得.故选B.【题目点拨】本题考查了向量平行的坐标表示,属于基础题型.3、D【解题分析】
运用正弦函数的一个周期的图象,结合单调性、值域和对称中心,以及不等式的解集,可得所求结论.【题目详解】函数(),在,单调递增,在上单调递减;值域为;图象关于点对称;由可得,解得:.故选:D.【题目点拨】本题考查三角函数的图象和性质,考查逻辑思维能力和运算能力,属于常考题.4、A【解题分析】
根据平面向量加法及数乘的几何意义,即可求解,得到答案.【题目详解】根据平面向量加法及数乘的几何意义,可得,故选A.【题目点拨】本题主要考查了平面向量的加法法则的应用,其中解答中熟记平面向量的加法法则是解答的关键,着重考查了推理与运算能力,属于基础题.5、B【解题分析】
根据奇函数的性质求出的解析式,然后分类讨论求出不等式的解集.【题目详解】因为是定义在上的奇函数,所以有,显然是不等式的解集;当时,;当时,,综上所述:不等式的解集是,故本题选B.【题目点拨】本题考查了利用奇函数性质求解不等式解集问题,考查了分类思想,正确求出函数的解析式是解题的关键.6、C【解题分析】
根据圆的标准方程的形式写.【题目详解】圆心为,半径为2的圆的标准方程是.故选C.【题目点拨】本题考查了圆的标准方程,故选C.7、C【解题分析】
由又,可得公差,从而可得结果.【题目详解】是等差数列又,∴公差,,故选C.【题目点拨】本题主要考查等差数列的通项公式与求和公式的应用,意在考查灵活应用所学知识解答问题的能力,属于中档题.8、C【解题分析】
由向量的坐标运算表示2a【题目详解】解:因为a=(1,-1),b=(-1,2故选C.【题目点拨】本题考查了向量的加法和数量积的坐标运算;属于基础题目.9、C【解题分析】
根据,得到,利用余弦定理,得到关于的方程,从而得到的值,得到的周长.【题目详解】在中,由正弦定理因为,所以因为,,所以由余弦定理得即,解得,所以所以的周长为.故选C.【题目点拨】本题考查正弦定理的角化边,余弦定理解三角形,属于简单题.10、D【解题分析】
连续投两次骰子共有36种,求出满足情况的个数,即可求解.【题目详解】一枚骰子投一次,向上的点数有6种,则连续投两次骰子共有36种,两次向上点数均为1的有1种情况,概率为.故选:D.【题目点拨】本题考查古典概型的概率,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
利用诱导公式将等式化简,可求出的值.【题目详解】由诱导公式可得,故答案为.【题目点拨】本题考查利用诱导公式化简求值,在利用诱导公式处理化简求值的问题时,要充分理解“奇变偶不变,符号看象限”这个规律,考查运算求解能力,属于基础题.12、【解题分析】
利用反三角函数的性质及,可得答案.【题目详解】解:,且,,∴,故答案为:【题目点拨】本题主要考查反三角函数的性质,相对简单.13、8073【解题分析】
对分奇偶讨论求解即可【题目详解】当为偶数时,当为奇数时,故当为奇数时,故故答案为8073【题目点拨】本题考查数列递推关系,考查分析推理能力,对分奇偶讨论发现规律是解决本题的关键,是难题14、7【解题分析】
在中,利用余弦定理得到,即可求解,得到答案.【题目详解】由余弦定理可得,解得.故答案为:7.【题目点拨】本题主要考查了余弦定理的应用,其中解答中熟记三角形的余弦定理,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.15、【解题分析】
根据弧长公式即可求解.【题目详解】由弧长公式可得故答案为:【题目点拨】本题主要考查了弧长公式的应用,属于基础题.16、1【解题分析】
表示出扇形的面积,利用二次函数的单调性即可得出.【题目详解】设扇形的半径为,圆心角为,则弧长,,即,该扇形的面积,当且仅当时取等号.该扇形的面积的最大值为.故答案:.【题目点拨】本题考查了弧长公式与扇形的面积计算公式、二次函数的单调性,考查了计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2),,,,,【解题分析】
(1)先计算,将数据代入公式得到,,线性回归方程为(2)利用(1)中所求的线性回归方程,代入数据分别计算得到答案.【题目详解】(1)由,可求得,故,,,,代入可得,,所以所求的线性回归方程为.(2)利用(1)中所求的线性回归方程可得,当时,;当时,;当时,;当时,;当时,;当时,.【题目点拨】本题考查了线性回归方程的计算,求估计值,意在考查学生的计算能力和对于回归方程公式的理解应用.18、(1)证明见解析;定点坐标;(2)【解题分析】
(1)将整理为:,可得方程组,从而求得定点;(2)直线方程联立求得圆心坐标,将问题转化为求圆心到直线距离的最大值的问题,根据圆的性质可知最大值为,从而求得最小值.【题目详解】(1)证明:,可化为:令,解得:,直线恒过定点(2)将,联立可得交点坐标设到直线的距离为,则则求的最小值,即求的最大值由(1)知,直线恒过点,则最大时,,即【题目点拨】本题考查直线过定点问题的求解、直线被圆截得弦长的最值的求解,关键是能够根据圆的性质确定求解弦长的最小值即为求解圆心到直线距离的最大值,求得最大值从而代入求得弦长最小值.19、(Ⅰ);(Ⅱ)或.【解题分析】
(Ⅰ)根据直线与直线垂直,求得直线的斜率为,再利用直线的点斜式方程,即可求解;(Ⅱ)设所求直线方程为,由点到直线的距离公式,列出方程,求得的值,即可得到答案.【题目详解】(Ⅰ)由题意,设所求直线的斜率为,由直线的斜率为,因为直线与直线垂直,所以直线的斜率为,所以所求直线的方程为直线的方程为:,即.(Ⅱ)设所求直线方程为,即,直线上任取一点,由点到直线的距离公式,可得,解得或-4,所以所求直线方程为:或.【题目点拨】本题主要考查了直线方程的求解,两直线的位置关系的应用,以及点到直线的距离公式的应用,着重考查了推理与运算能力,属于基础题.20、(1)证明见解析;(2)证明见解析;(3).【解题分析】
(1)利用线面平行的判定定理,寻找面PAD内的一条直线平行于MN,即可证出;(2)先证出一条直线垂直于面PCD,依据第一问结论知,MN也垂直于面PCD,利用面面垂直的判定定理即可证出;(3)依据等积法,即可求出点到平面的距离.【题目详解】证明:(1)取中点为,连接分别为的中点,是平行四边形,平面,平面,∴平面证明:(2)因为平面,所以,而,面PAD,而面,所以,由,为的终点,所以由于平面,又由(1)知,平面,平面,∴平面平面解:(3),,,则点到平面的距离为(也可构造三棱锥)【题目点拨】本题主要考查线面平行、面面垂直的判定定理以及等积法求点到面的距离,意在考查学生的直观想象、逻辑推理、数学运算能力.21、(1)证明见解析;(2);(3)当时,没有零点;当时,有且仅有一个零点【解题分析】
(1)求出函数定义域后直接用定义法即可证明;(2)由题意得,对两边同时平方得,求出的取值范围即可得解;(3)转化条件得,令,利用二次函数的性质分类讨论即可得解.【题目详解】(1)证明:令,解得,故函数的定义域为令,由,可得,所以,,故即,所以函数在定义域上单调递增.(2)由,,故,,当时,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 关于洗煤合同范例
- 临时财务用工合同范本
- 各种劳务合同范本
- 中国掀起数字化浪潮的心得体会
- 医学三基康复科模拟练习题
- 劳务合同范本务
- 医院房屋建设施工合同范本
- 医药厂家销售合同范本
- 美术基础习题及参考答案
- 半包家装合同范本
- 2025年鄂东高三语文2月调研联考试卷附答案解析
- 沪教版数学四年级下册全册教案
- 数字孪生技术 课件 第1、2章 概述;数字孪生中的物联网和人工智能
- 2025年广东省广晟控股集团有限公司招聘笔试参考题库含答案解析
- 2025语文新教材三下全册8个单元教材解读分析汇编
- java安全编码规范
- 美丽的春天课件
- 2025年山东青岛自贸发展有限公司招聘笔试参考题库含答案解析
- 液化气罐的使用和安全防范
- 2025年中考物理总复习《内能》专项测试卷含有答案
- 会计法律法规答题答案
评论
0/150
提交评论