版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省各地数学高一第二学期期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.水平放置的,用斜二测画法作出的直观图是如图所示的,其中,,则绕AB所在直线旋转一周后形成的几何体的表面积为()A. B. C. D.2.已知数列的前项和为,若,对任意的正整数均成立,则()A.162 B.54 C.32 D.163.已知直线过点,且在纵坐标轴上的截距为横坐标轴上的截距的两倍,则直线的方程为()A. B.C.或 D.或4.已知实数满足,那么的最小值为(
)A. B. C. D.5.已知、是平面上两个不共线的向量,则下列关系式:①;②;③;④.正确的个数是()A.4 B.3 C.2 D.16.在中,,,,,则()A.或 B. C. D.7.若将函数的图象向右平移个单位后,所得图象对应的函数为()A. B. C. D.8.两个正实数满足,则满足,恒成立的取值范围()A. B. C. D.9.若实数,满足约束条件,则的最大值为()A.-3 B.1 C.9 D.1010.若tan()=2,则sin2α=()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在一个不透明的布袋中,红色,黑色,白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球,黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是_________个.12.已知无穷等比数列的首项为,公比为q,且,则首项的取值范围是________.13.已知(),则________.(用表示)14.已知正方体的棱长为,点、分别为、的中点,则点到平面的距离为______.15.在上定义运算,则不等式的解集为_____.16.若过点作圆的切线,则直线的方程为_______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.甲、乙两台机床同时加工直径为10cm的零件,为了检验零件的质量,从零件中各随机抽取6件测量,测得数据如下(单位:mm):甲:99,100,98,100,100,103;乙:99,100,102,99,100,100.(1)分别计算上述两组数据的平均数和方差(2)根据(1)的计算结果,说明哪一台机床加工的零件更符合要求.18.在中,内角,,所对的边分别为,,且.(1)求角的大小;(2)若,,求的面积.19.求经过点且分别满足下列条件的直线的一般式方程.(1)倾斜角为45°;(2)在轴上的截距为5;(3)在第二象限与坐标轴围成的三角形面积为4.20.已知.(Ⅰ)化简;(Ⅱ)已知,求的值.21.已知的角、、所对的边分别是、、,设向量,,.(1)若,求证:为等腰三角形;(2)若,边长,角,求的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
先根据斜二测画法的性质求出原图形,再分析绕AB所在直线旋转一周后形成的几何体的表面积即可.【题目详解】根据斜二测画法的性质可知,原是以为底,高为的等腰三角形.又.故为边长为2的正三角形.则绕AB所在直线旋转一周后形成的几何体可看做两个以底面半径为,高为的圆锥组合而成.故表面积为.故选:B【题目点拨】本题主要考查了斜二测画法还原几何图形与旋转体的侧面积求解.需要根据题意判断出旋转后的几何体形状再用公式求解.属于中档题.2、B【解题分析】
由,得到数列表示公比为3的等比数列,求得,进而利用,即可求解.【题目详解】由,可得,所以数列表示公比为3的等比数列,又由,,得,解得,所以,所以故选B.【题目点拨】本题主要考查了等比数列的定义,以及数列中与之间的关系,其中解答中熟记等比数列的定义和与之间的关系是解答的关键,着重考查了推理与运算能力,属于基础题.3、D【解题分析】
根据题意,分直线是否经过原点2种情况讨论,分别求出直线的方程,即可得答案.【题目详解】根据题意,直线分2种情况讨论:①当直线过原点时,又由直线经过点,所求直线方程为,整理为,②当直线不过原点时,设直线的方程为,代入点的坐标得,解得,此时直线的方程为,整理为.故直线的方程为或.故选:D.【题目点拨】本题考查直线的截距式方程,注意分析直线的截距是否为0,属于基础题.4、A【解题分析】
表示直线上的点到原点的距离,利用点到直线的距离公式求得最小值.【题目详解】依题意可知表示直线上的点到原点的距离,故原点到直线的距离为最小值,即最小值为,故选A.【题目点拨】本小题主要考查点到直线的距离公式,考查化归与转化的数学思想方法,属于基础题.5、C【解题分析】
根据数量积的运算性质对选项进行逐一判断,即可得到答案.【题目详解】①.,满足交换律,正确.②.,满足分配律,正确.③.,所以不正确.④.,
,可正可负可为0,所以④不正确.故选:C【题目点拨】本题考查向量数量积的运算性质,属于中档题6、C【解题分析】
由三角形面积公式可得,进而可得解.【题目详解】在中,,,,,可得,所以,所以【题目点拨】本题主要考查了三角形的面积公式,属于基础题.7、B【解题分析】
根据正弦型函数的图象平移规律计算即可.【题目详解】.故选:B.【题目点拨】本题考查三角函数图象的平移变化,考查对基本知识的理解和掌握,属于基础题.8、B【解题分析】
由基本不等式和“1”的代换,可得的最小值,再由不等式恒成立思想可得小于等于的最小值,解不等式即得m的范围。【题目详解】由,,可得,当且仅当上式取得等号,若恒成立,则有,解得.故选:B【题目点拨】本题考查利用基本不等式求恒成立问题中的参数取值范围,是常考题型。9、C【解题分析】
画出可行域,向上平移基准直线到可行域边界的位置,由此求得目标函数的最大值.【题目详解】画出可行域如下图所示,由图可知,向上平移基准直线到的位置,此时目标函数取得最大值为.故选C.【题目点拨】本小题主要考查利用线性规划的知识求目标函数的最大值,考查数形结合的数学思想方法,属于基础题.10、B【解题分析】
由两角差的正切得tan,化sin2α为tan的齐次式求解【题目详解】tan()=2,则则sin2α=故选:B【题目点拨】本题考查两角差的正切公式,考查二倍角公式及齐次式求值,意在考查公式的灵活运用,是基础题二、填空题:本大题共6小题,每小题5分,共30分。11、16【解题分析】
根据红色球和黑色球的频率稳定值,计算红色球和黑色球的个数,从而得到白色球的个数.【题目详解】根据概率是频率的稳定值的意义,红色球的个数为个;黑色球的个数为个;故白色球的个数为4个.故答案为:16.【题目点拨】本题考查概率和频率之间的关系:概率是频率的稳定值.12、【解题分析】
根据极限存在得出,对分、和三种情况讨论得出与之间的关系,可得出的取值范围.【题目详解】由于,则.①当时,则,;②当时,则,;③当时,,解得.综上所述:首项的取值范围是,故答案为:.【题目点拨】本题考查极限的应用,要结合极限的定义得出公比的取值范围,同时要对公比的取值范围进行分类讨论,考查分类讨论思想的应用,属于中等题.13、【解题分析】
根据同角三角函数之间的关系,结合角所在的象限,即可求解.【题目详解】因为,所以,故,解得,又,,所以.故填.【题目点拨】本题主要考查了同角三角函数之间的关系,三角函数在各象限的符号,属于中档题.14、【解题分析】
作出图形,取的中点,连接,证明平面,可知点平面的距离等于点到平面的距离,然后利用等体积法计算出点到平面的距离,即为所求.【题目详解】如下图所示,取的中点,连接,在正方体中,且,、分别为、的中点,且,所以,四边形为平行四边形,且,又,,平面,平面,平面,则点平面的距离等于点到平面的距离,的面积为,在正方体中,平面,且平面,,易知三棱锥的体积为.的面积为.设点到平面的距离为,则,.故答案为:.【题目点拨】本题考查点到平面的距离的求法,是中档题,解题时要认真审题,注意等体积法的合理运用.15、【解题分析】
根据定义运算,把化简得,求出其解集即可.【题目详解】因为,所以,即,得,解得:故答案为:.【题目点拨】本题考查新定义,以及解一元二次不等式,考查运算的能力,属于基础题.16、或【解题分析】
讨论斜率不存在时是否有切线,当斜率存在时,运用点到直线距离等于半径求出斜率【题目详解】圆即①当斜率不存在时,为圆的切线②当斜率存在时,设切线方程为即,解得此时切线方程为,即综上所述,则直线的方程为或【题目点拨】本题主要考查了过圆外一点求切线方程,在求解过程中先讨论斜率不存在的情况,然后讨论斜率存在的情况,利用点到直线距离公式求出结果,较为基础。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)乙机床加工的零件更符合要求.【解题分析】
(1)直接由平均数和方差的计算公式代入数据进行计算即可.
(2)由平均数和方差各自说明数据的特征,做出判断.【题目详解】(1),,,.(2)因为,,说明甲、乙机床加工的零件的直径长度的平均值相同.且甲机床加工的零件的直径长度波动比较大,
因此乙机床加工的零件更符合要求.【题目点拨】本题考查计算数据的平均数和方差以及根据数据的平均数和方差做出相应的判断,属于基础题.18、(1)(2)【解题分析】
(1)由正弦定理以及两角差的余弦公式得到,由特殊角的三角函数值得到结果;(2)结合余弦定理和面积公式得到结果.【题目详解】(1)由正弦定理得,∵,∴,即,∴又∵,∴.(2)∵∴.∴,∴.【题目点拨】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.19、(1)(2)(3)【解题分析】
(1)利用斜率和倾斜角的关系,可以求出斜率,可以用点斜式写出直线方程,最后化为一般方程;(2)设出直线的斜截式方程,把点代入方程中求出斜率,进而可求出方程,化为一般式方程即可;(3)设出直线的截距式方程,利用面积公式和已知条件,可以求出所设参数,即可求出直线方程,化为一般式即可.【题目详解】(1)因为直线的倾斜角为45°,所以斜率,代入点斜式,即.(2)因为直线在轴上的截距是5,所以设直线方程为:,代入点得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年建筑安装工程承包合同
- 2024年度新能源发电EPC施工合同
- 股票课件教学课件
- 2024年城市规划地形测绘专项协议
- 2024年度旅游景区开发合同
- 2024年企业信息安全服务合同
- 2024年度CRM系统服务合同:提供销售合同管理专业支持
- 2024年亚太地区进出口合作协议
- 2024基于物联网技术的服务合同研究
- 2024年度煤炭供应合同
- 春节期间的传统烟花和焰火表演
- 绿植花卉租摆及园林养护服务 投标方案(技术方案)
- 会展概论-来逢波-习题答案
- 广东小学生诗词大赛备考试题库400题(三四年级适用)
- 排烟机房管理制度
- 关于课程与教材建设的研究报告
- 阿基米德-人物介绍-最终最牛版
- 2022年全国高考体育单招考试语文押题卷模拟试题一(含答案解析)
- 大连理工大学《877经济学原理》历年考研真题汇编(含部分答案)合集
- 浙江省金华市兰溪市2023-2024学年五年级上学期期中语文试卷
- 第10课 多民族政权并立与元朝的统一【知识精研】 《中国历史》 中职中专 高效课堂课件
评论
0/150
提交评论