四川省凉山彝族自治州2024届数学高一下期末经典模拟试题含解析_第1页
四川省凉山彝族自治州2024届数学高一下期末经典模拟试题含解析_第2页
四川省凉山彝族自治州2024届数学高一下期末经典模拟试题含解析_第3页
四川省凉山彝族自治州2024届数学高一下期末经典模拟试题含解析_第4页
四川省凉山彝族自治州2024届数学高一下期末经典模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省凉山彝族自治州2024届数学高一下期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设是两条不同的直线,是两个不同的平面,则下列叙述正确的是()①若,则;②若,则;③若,则;④若,则.A.①② B.③④ C.①③ D.②④2.在中,,则等于()A. B. C. D.3.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数 B.平均数C.方差 D.极差4.设全集,集合,,则()A. B.C. D.5.已知函数的值域为,且图象在同一周期内过两点,则的值分别为()A. B.C. D.6.在空间四边形中,分别是的中点.若,且与所成的角为,则四边形的面积为()A. B. C. D.7.已知函数图象的一条对称轴是,则函数的最大值为()A.5 B.3 C. D.8.读下面的程序框图,若输入的值为-5,则输出的结果是()A.-1 B.0 C.1 D.29.在棱长为2的正方体中,是内(不含边界)的一个动点,若,则线段的长的取值范围为()A. B. C. D.10.已知,则的垂直平分线所在直线方程为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.无限循环小数化成最简分数为________12.已知sin+cosα=,则sin2α=__13.已知三棱锥P-ABC,PA⊥平面ABC,AC⊥BC,PA=2,AC=BC=1,则三棱锥P-ABC外接球的体积为__.14.设向量满足,,,.若,则的最大值是________.15.某单位有200名职工,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号…,196-200号).若第5组抽出的号码为22,则第8组抽出的号码应是16.化简:______.(要求将结果写成最简形式)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)化简;(2)若,且为第一象限角,求的值.18.已知.(1)求实数的值;(2)若,求实数的值.19.已知函数.(1)求的最小正周期和单调递增区间;(2)若方程在有两个不同的实根,求的取值范围.20.已知,,且与的夹角为.(1)求在上的投影;(2)求.21.已知,,与的夹角是(1)计算:①,②;(2)当为何值时,与垂直?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】可以线在平面内,③可以是两相交平面内与交线平行的直线,②对④对,故选D.2、D【解题分析】

先根据向量的夹角公式计算出的值,然后再根据同角的三角函数的基本关系即可求解出的值.【题目详解】因为,所以,所以,所以.故选:D.【题目点拨】本题考查坐标形式下向量的夹角计算,难度较易.注意:的夹角并不是,而应是的补角.3、A【解题分析】

可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案.【题目详解】设9位评委评分按从小到大排列为.则①原始中位数为,去掉最低分,最高分,后剩余,中位数仍为,A正确.②原始平均数,后来平均数平均数受极端值影响较大,与不一定相同,B不正确③由②易知,C不正确.④原极差,后来极差可能相等可能变小,D不正确.【题目点拨】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.4、A【解题分析】

进行交集、补集的运算即可.【题目详解】∁UB={x|﹣2<x<1};∴A∩(∁UB)={x|﹣1<x<1}.故选:A.【题目点拨】考查描述法的定义,以及交集、补集的运算.5、C【解题分析】

根据值域先求,再代入数据得到最大值和最小值对应相差得到答案.【题目详解】函数的值域为即,图象在同一周期内过两点故答案选C【题目点拨】本题考查了三角函数的最大值最小值,周期,意在考查学生对于三角函数公式和性质的灵活运用和计算能力.6、A【解题分析】

连接EH,因为EH是△ABD的中位线,所以EH∥BD,且EH=BD.同理,FG∥BD,且FG=BD,所以EH∥FG,且EH=FG.所以四边形EFGH为平行四边形.因为AC=BD=a,AC与BD所成的角为60°所以EF=EH.所以四边形EFGH为菱形,∠EFG=60°.∴四边形EFGH的面积是2××()2=a2故答案为a2,故选A.考点:本题主要是考查的知识点简单几何体和公理四,公理四:和同一条直线平行的直线平行,证明菱形常用方法是先证明它是平行四边形再证明邻边相等,以及面积公式属于基础题.点评:解决该试题的关键是先证明四边形EFGH为菱形,然后说明∠EFG=60°,最后根据三角形的面积公式即可求出所求.7、B【解题分析】

函数图象的一条对称轴是,可得,解得.可得函数,再利用辅助角公式、倍角公式、三角函数的有界性即可得出.【题目详解】函数图象的一条对称轴是,,解得.则函数当时取等号.函数的最大值为1.故选.【题目点拨】本题主要考查三角函数的性质应用以及利用二倍角公式和辅助角公式进行三角恒等变换.8、A【解题分析】

直接模拟程序框图运行,即可得出结论.【题目详解】模拟程序框图的运行过程如下:输入,进入判断结构,则,,输出,故选:A.【题目点拨】本题主要考查程序框图,一般求输出结果时,常模拟程序运行,列表求解.9、C【解题分析】

先判断是正四面体,可得正四面体的棱长为,则的最大值为的长,的最小值是到平面的距离,结合不在三角形的边上,计算可得结果.【题目详解】由正方体的性质可知,是正四面体,且正四面体的棱长为,在内,的最大值为,的最小值是到平面的距离,设在平面的射影为,则为正三角形的中心,,,的最小值为,又因为不在三角形的边上,所以的范围是,故选C.【题目点拨】本题主要考查正方体的性质及立体几何求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义以及平面几何的有关结论来解决,非常巧妙;二是将立体几何中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.10、A【解题分析】

首先根据题中所给的两个点的坐标,应用中点坐标公式求得线段的中点坐标,利用两点斜率坐标公式求得,利用两直线垂直时斜率的关系,求得其垂直平分线的斜率,利用点斜式写出直线的方程,化简求得结果.【题目详解】因为,所以其中点坐标是,又,所以的垂直平分线所在直线方程为,即,故选A.【题目点拨】该题考查的是有关线段的垂直平分线的方程的问题,在解题的过程中,需要明确线段的垂直平分线的关键点一是垂直,二是平分,利用相关公式求得结果.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

利用无穷等比数列求和的方法即可.【题目详解】.故答案为:【题目点拨】本题主要考查了无穷等比数列的求和问题,属于基础题型.12、【解题分析】∵,∴即,则.故答案为:.13、6【解题分析】

如图所示,取PB的中点O,∵PA⊥平面ABC,∴PA⊥AB,PA⊥BC,又BC⊥AC,PA∩AC=A,∴BC⊥平面PAC,∴BC⊥PC.∴OA=12PB,OC=12PB,∴OA=OB=OC=OP,故O为外接球的球心.又PA=2,AC=BC=1,∴AB=2,PB=6,∴外接球的半径R=∴V球=43πR3=4π3×(62)3=6点睛:空间几何体与球接、切问题的求解方法:(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.14、【解题分析】

令,计算出模的最大值即可,当与同向时的模最大.【题目详解】令,则,因为,所以当,,因此当与同向时的模最大,【题目点拨】本题主要考查了向量模的计算,以及二次函数在给定区间上的最值.整体换元的思想,属于较的难题,在解二次函数的问题时往往结合图像、开口、对称轴等进行分析.15、1【解题分析】试题分析:因为将全体职工随机按1~200编号,并按编号顺序平均分为40组,由分组可知,抽号的间隔为5,因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为1.考点:系统抽样.点评:本题考查系统抽样,在系统抽样过程中得到的样本号码是最规则的一组编号.16、【解题分析】

结合诱导公式化简,再结合两角差正弦公式分析即可【题目详解】故答案为:【题目点拨】本题考查三角函数的化简,诱导公式的使用,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)由条件利用诱导公式进行化简所给的式子,即可求得答案;(2)由题意应用诱导公式,同角三角函数的基本关系求得的值,可得的值,即可求得答案.【题目详解】(1)(2)①又②解得:为第一象限角【题目点拨】本题主要考查了三角函数化简求值问题,解题关键是熟练使用诱导公式和同名三角函数求值的解法,考查了分析能力和计算能力,属于中档题.18、(1);(2).【解题分析】试题分析:(1)利用向量,建立关于的方程,即可求解的值;(2)写出向量的坐标,利用得出关于的方程,即可求解实数的值.试题解析:(1)(2)由(1)得所以考点:向量的坐标运算.19、(1)最小正周期,;(2).【解题分析】

(1)利用两角差的余弦公式、倍角公式、辅助角公式得,求得周期;(2)利用换元法令,将问题转化成方程在有两个不同的实根,再利用图象得的取值范围.【题目详解】(1),所以的最小正周期,由得:,所以的单调递增区间是.(2)令,因为,所以,即方程在有两个不同的实根,由函数的图象可知,当时满足题意,所以的取值范围为.【题目点拨】第(1)问考查三角恒等变换的综合运用;第二问考查换元法求参数的取值范围,注意在换元的过程中参数不能出错,否则转化后的问题与原问题就不等价.20、(1)-2.(2).【解题分析】分析:(1)根据题中所给的条件,利用向量的数量积的定义式,求得,之后应用投影公式,在上的投影为,求得结果;(2)应用向量模的平方等于向量的平方,之后应用公式求得结果.详解:(1)在上的投影为(2)因为,,且与的夹角为所以所以点睛:该题考查的是有关向量的投影以及向量模的计算问题,在解题的过程中,涉及到的知识点有向量的数量积的定义式,投影公式,向量模的平方和向量的平方是相等的,灵活运用公式求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论