2024届上海大学附中数学高一下期末检测试题含解析_第1页
2024届上海大学附中数学高一下期末检测试题含解析_第2页
2024届上海大学附中数学高一下期末检测试题含解析_第3页
2024届上海大学附中数学高一下期末检测试题含解析_第4页
2024届上海大学附中数学高一下期末检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届上海大学附中数学高一下期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知满足条件,则目标函数的最小值为A.0 B.1 C. D.2.已知,且,则下列不等式正确的是()A. B. C. D.3.若程序框图如图所示,则该程序运行后输出k的值是()A.5 B.6 C.7 D.84.某社区义工队有24名成员,他们年龄的茎叶图如下表所示,先将他们按年龄从小到大编号为1至24号,再用系统抽样方法抽出6人组成一个工作小组,则这个小组年龄不超过55岁的人数为()3940112551366778889600123345A.1 B.2 C.3 D.45.已知的三边满足,则的内角C为()A. B. C. D.6.设等比数列的前项和为,若,公比,则的值为()A.15 B.16 C.30 D.317.己知向量,.若,则m的值为()A. B.4 C.- D.-48.根据如下样本数据x

3

4

5

6

7

8

y

可得到的回归方程为,则()A. B. C. D.9.已知,则的值等于()A. B. C. D.10.点是角终边上一点,则的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设数列满足,,且,用表示不超过的最大整数,如,,则的值用表示为__________.12.中,三边所对的角分别为,若,则角______.13.已知的一个内角为,并且三边长构成公差为4的等差数列,则的面积为_______________.14.弧度制是数学上一种度量角的单位制,数学家欧拉在他的著作《无穷小分析概论》中提出把圆的半径作为弧长的度量单位.已知一个扇形的弧长等于其半径长,则该扇形圆心角的弧度数是__________.15.已知常数θ∈(0,π2),若函数f(x)在Rf(x)=2sinπx-1≤x≤1log是________.16.在200m高的山顶上,测得山下一塔顶与塔底的俯角分别是30°,60°,则塔高为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等比数列是递增数列,且满足:,.(1)求数列的通项公式:(2)设,求数列的前项和.18.如图,正三棱柱的各棱长均为,为棱的中点,求异面直线与所成角的余弦值.19.如图,已知点和点,,且,其中为坐标原点.(1)若,设点为线段上的动点,求的最小值;(2)若,向量,,求的最小值及对应的的值.20.已知为等差数列,且,.求的通项公式;若等比数列满足,,求的前n项和公式.21.设数列的前项和为,已知(Ⅰ)求,并求数列的通项公式;(Ⅱ)求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】作出不等式区域如图所示:求目标函数的最小值等价于求直线的最小纵截距.平移直线经过点A(-2,0)时最小为-2.故选C.2、B【解题分析】

通过反例可排除;根据的单调性可知正确.【题目详解】当,时,,,则错误;当,时,,则错误;由单调递增可知,当时,,则正确本题正确选项:【题目点拨】本题考查不等关系的判断,解决此类问题常采用排除法,属于基础题.3、A【解题分析】试题分析:第一次循环运算:;第二次:;第三次:;第四次:;第五次:,这时符合条件输出,故选A.考点:算法初步.4、B【解题分析】

求出样本间隔,结合茎叶图求出年龄不超过55岁的有8人,然后进行计算即可.【题目详解】解:样本间隔为,年龄不超过55岁的有8人,则这个小组中年龄不超过55岁的人数为人.故选:.【题目点拨】本题主要考查茎叶图以及系统抽样的应用,求出样本间隔是解决本题的关键,属于基础题.5、C【解题分析】原式可化为,又,则C=,故选C.6、A【解题分析】

直接利用等比数列前n项和公式求.【题目详解】由题得.故选A【题目点拨】本题主要考查等比数列求和,意在考查学生对该知识的理解掌握水平和分析推理能力.7、B【解题分析】

根据两个向量垂直的坐标表示列方程,解方程求得的值.【题目详解】依题意,由于,所以,解得.故选B.【题目点拨】本小题主要考查两个向量垂直的坐标表示,考查向量减法的坐标运算,属于基础题.8、A【解题分析】试题分析:依据样本数据描点连线可知图像为递减且在轴上的截距大于0,所以.考点:1.散点图;2.线性回归方程;9、B【解题分析】.10、A【解题分析】

利用三角函数的定义求出的值,然后利用诱导公式可求出的值.【题目详解】由三角函数的定义可得,由诱导公式可得.故选A.【题目点拨】本题考查三角函数的定义,同时也考查了利用诱导公式求值,在利用诱导公式求值时,充分理解“奇变偶不变,符号看象限”这个规律,考查计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

由题设可得知该函数的最小正周期是,令,则由等差数列的定义可知数列是首项为,公差为的等差数列,即,由此可得,将以上个等式两边相加可得,即,所以,故,应填答案.点睛:解答本题的关键是借助题设中提供的数列递推关系式,先求出数列的通项公式,然后再运用列项相消法求出,最后借助题设中提供的新信息,求出使得问题获解.12、【解题分析】

利用余弦定理化简已知条件,求得的值,进而求得的大小.【题目详解】由得,由于,所以.【题目点拨】本小题主要考查余弦定理解三角形,考查特殊角的三角函数值,属于基础题.13、【解题分析】

试题分析:设三角形的三边长为a-4,b=a,c=a+4,(a<b<c),根据题意可知三边长构成公差为4的等差数列,可知a+c=2b,C=120,,则由余弦定理,c=a+b-2abcosC,,三边长为6,10,14,,b=a+c-2accosB,即(a+c)=a+c-2accosB,cosB=,sinB=可知S==.考点:本试题主要考查了等差数列与解三角形的面积的求解的综合运用.点评:解决该试题的关键是利用余弦定理来求解,以及边角关系的运用,正弦面积公式来求解.巧设变量a-4,a,a+4会简化运算.14、1【解题分析】设扇形的弧长和半径长为,由弧度制的定义可得,该扇形圆心角的弧度数是.15、15【解题分析】

根据f(-1【题目详解】∵函数f(x)在R上恒有f(-1∴f-∴函数周期为4.∵常数θ∈(0,π∴cos∴函数y=f(x)-cosθ-1在区间[-5,14]上零点,即函数y=f(x) (x∈[-5,14])与直线由f(x)=2sinπx由图可知,在一个周期内,函数y=f(x)-cos故函数y=f(x)-cosθ-1在区间故填15.【题目点拨】本题主要考查了函数零点的个数判断,涉及数形结合思想在解题中的运用,属于难题.16、【解题分析】

试题分析:根据题意,设塔高为x,则可知,a表示的为塔与山之间的距离,可以解得塔高为.考点:解三角形的运用点评:主要是考查了解三角形中的余弦定理和正弦定理的运用,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】

(1)利用等比数列的性质结合已知条件解得首项和公比,由此得通项公式;(2)由(1)得,再利用等差数列的求和公式进行解答即可.【题目详解】(1)由题意,得,又,所以,,或,,由是递增的等比数列,得,所以,,且,∴,即;(2)由(1)得,得,所以数列是以1为首项,以2为公差的等差数列,所以.【题目点拨】本题考查了等差数列与等比数列的通项公式,以及等差数列的其前n项和公式的应用,考查了推理能力与计算能力,属于基础题.18、【解题分析】

作交于,则为异面直线与所成角,在中求出各边的长度,根据余弦定理,得到的余弦值,即为答案.【题目详解】作交于,则为异面直线与所成角,因为为中点,所以是的一条中位线,所以,因为正三棱柱,所以面,而面,所以所以在中,,则,在中,,则,在中,由余弦定理得.故答案为【题目点拨】本题考查求异面直线所成的角的余弦值,余弦定理,属于简单题.19、(1);(2),或.【解题分析】

(1)设,求出,把表示成关于的二次函数;(2)利用向量的坐标运算得,令把表示成关于的二次函数,再求最小值.【题目详解】(1)设,又,所以,,所以当时,取得最小值.(2)由题意得,,,则=,令,因为,所以,又,所以,,所以当时,取得最小值,即,解得或,所以当或时,取得最小值.【题目点拨】本题考查利用向量的坐标运算求向量的模和数量积,在求解过程中用到知一求二的思想方法,即已知三个中的一个,另外两个均可求出.20、(1);(2).【解题分析】

设等差数列的公差为d,由已知列关于首项与公差的方程组,求得首项与公差,则的通项公式可求;求出,进一步得到公比,再由等比数列的前n项和公式求解.【题目详解】为等差数列,设公差为d,由已知可得,解得,.;由,,等比数列的公比,的前n项和公式.【题目点拨】本题考查等差数列的通项公式,考查等比数列的前n项和,是中档题.21、(1),;(2).【解题分析】试题分析:本题主要考

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论