专题2.1 将军饮马模型(压轴题专项讲练)(浙教版)(原卷版)_第1页
专题2.1 将军饮马模型(压轴题专项讲练)(浙教版)(原卷版)_第2页
专题2.1 将军饮马模型(压轴题专项讲练)(浙教版)(原卷版)_第3页
专题2.1 将军饮马模型(压轴题专项讲练)(浙教版)(原卷版)_第4页
专题2.1 将军饮马模型(压轴题专项讲练)(浙教版)(原卷版)_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题2.1将军饮马模型【典例1】古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸同侧的两个军营A,B.他总是先去A营,再到河边饮马,之后,再巡查B营.他时常想,怎么走,才能使他每天走的路程之和最短呢?大数学家海伦曾用轴对称的方法巧妙地解决了这个问题.如图2,作B关于直线l的对称点B′,连结AB′与直线l交于点C,点C就是所求的位置.证明:如图3,在直线l上另取任一点C′,连结AC′,BC′,B′C′,∵直线l是点B,B′的对称轴,点C,C′在l上,∴CB=,C′B=,∴AC+CB=AC+CB′=.在△AC′B′,∵AB′<AC′+C′B′,∴AC+CB<AC′+C′B′即AC+CB最小.本问题实际上是利用轴对称变换的思想,把A,B在直线同侧的问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即“三角形两边之和大于第三边”的问题加以解决(其中C在AB′与l的交点上,即A,C,B′三点共线).本问题可归纳为“求定直线上一动点与直线外两定点的距离和的最小值”的问题的数学模型.拓展应用:如图4,等腰直角△ABC中,∠ACB=90°,BD平分∠ABC交AC于D,点P是BD上一个动点,点M是BC上一个动点,请在图5中画出PC+PM的值最小时P的位置.(可用三角尺)【思路点拨】利用轴对称的性质和三角形的三边关系可得;拓展应用中,在BA上截取BC'=BC,连接CC',可证得C、C'关于BD对称,将两条线段的和最小问题转化为垂线段最短来解决.【解题过程】证明:如图3,在直线l上另取任一点C′,连结AC′,BC,B′C′,∵直线l是点B,B′的对称轴,点C,C′在l上,∴CB=CB',C′B=C'B',∴AC+CB=AC+CB′=AB'.在△AC′B′,∵AB′<AC′+C′B′,∴AC+CB<AC′+C′B′即AC+CB最小.故答案为:CB',C'B',AB';拓展应用:如图,在BA上截取BC'=BC,连接CC',过C'作C'M⊥BC于点M,交BD于点P,在BD上另取一点P',连接P'C',在BC上取点M',连接P'M',∵BC=BC',BD平分∠CBC',∴BD垂直平分CC',∴PC=PC',P'C=P'C',∴PC+PM=PC'+PM=C'M,∵C'P'+P'M'>C'M,∴PC+PM<P'C+P'M',∴点P即为所求.1.(2021秋•海丰县期末)如图,OE为∠AOB的角平分线,∠AOB=30°,OB=6,点P,C分别为射线OE,OB上的动点,则PC+PB的最小值是()A.3 B.4 C.5 D.62.(2021秋•天津期末)如图,在△ABC中,AB的垂直平分线DE交BC于点D,垂足为E,M为DE上任意一点,BA=3,AC=4,BC=6,则△AMC周长的最小值为()A.7 B.6 C.9 D.103.(2020秋•自贡期末)如图,在△ABC中,AB=AC,BC=6,面积是24;AC的中垂线分别交AB,AC的边于E,F;若点D是BC边的中点,点M是线段EF上的一动点,则△CDM周长的最小值为()A.8 B.9 C.10 D.114.(2021秋•官渡区期末)如图,已知点D、E分别是等边三角形ABC中BC、AB边的中点,AD=6,点F是线段AD上的动点,则BF+EF的最小值为()A.3 B.6 C.9 D.125.(2021秋•龙口市期末)如图,钝角三角形△ABC的面积是20,最长边BC=10,CD平分∠ACB,点P,Q分别是CD,AC上的动点,则AP+PQ的最小值为()A.2 B.3 C.4 D.56.(2021秋•河东区期末)如图,△ABC中,AD⊥BC,垂足为D,AD=BC,P为直线BC上方的一个动点,△PBC的面积等于△ABC的面积的12,则当PB+PC最小时,∠PBCA.30° B.45° C.60° D.90°7.(2021秋•大连期末)如图,∠ABC=30°,点D是它内部一点,BD=m,点E,F分别是BA,BC上的两个动点,则△DEF周长的最小值为()A.0.5m B.m C.1.5m D.2m8.(2021秋•丛台区校级期末)如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN的周长最小时,则∠ANM+∠AMN的度数为()A.80° B.90° C.100° D.130°9.(2021秋•罗庄区期末)如图,△ABC中,∠A=30°,BC=3,△ABC的面积9.点D、E、F分别是三边AB、BC、CA上的动点,则△DEF周长的最小值为()A.5 B.6 C.8 D.1010.(2021秋•思明区校级期中)如图,等边△ABC中,BD⊥AC于D,QD=15,点P、Q分别为AB、AD上的两个定点且BP=AQ=20,在BD上有一动点E使PE+QE最短,则PE+QE的最小值为()A.35 B.40 C.50 D.6011.(2021秋•海淀区校级期末)如图,边长为a的等边△ABC中,BF是AC上中线且BF=b,点D在BF上,连接AD,在AD的右侧作等边△ADE,连接EF,则△AEF周长的最小值是()A.12a+23b B.12a+b C.a12.(2021秋•同安区期末)为贯彻国家城乡建设一体化和要致富先修路的理念.某市决定修建道路和一座桥,方便张庄A和李厝B的群众出行到河岸a.张庄A和李厝B位于一条河流的同一侧,河的两岸是平行的直线.经测量,张庄A和李厝B到河岸b的距离分别为AC=p(m)、BD=q(m),且CD=(p+q)m,如图所示.现要求:建造的桥长要最短,然后考虑两村庄到河流另一侧桥头的路程之和最短,则这座桥建造的位置是.(河岸边上的点到河对岸的距离都相等)13.(2021秋•吉林期末)如图,在△ABC中,AB=5,AC=7.MN为BC边上的垂直平分线,若点D在直线MN上,连接AD,BD,则△ABD周长的最小值为.14.(2022•九龙坡区校级开学)如图,CD是△ABC的角平分线,△ABC的面积为12,BC长为6,点E,F分别是CD,AC上的动点,则AE+EF的最小值是.15.(2021秋•荔湾区期末)如图,已知AC平分∠BAD,CE⊥AD于点E,CB=CD.有下列结论:①∠ABC+∠ADC=180°;②AB+AD=2AE;③∠CDB=∠CAB;④若∠BAD=30°,AC=6,M是射线AD上一点,N是射线AB上一点,则△CMN周长的最小值大于6.其中正确结论的序号是.16.(2020秋•津南区期末)如图,在△ABC中,∠ACB=90°,∠B=30°,CD是高.(1)若AB=8,则AD的长为;(2)若M,N分别是CA,CB上的动点,点E在斜边AB上,请在图中画出点M,N,使DM+MN+NE最小(不写作法,保留作图痕迹).17.(2021秋•平山县期末)如图,在△ABC中,AB=AC,D是BC的中点,EF垂直平分AC,交AC于点E,交AB于点F,M是直线EF上的动点.(1)当MD⊥BC时.①若ME=1,则点M到AB的距离为;②若∠CMD=30°,CD=3,求△BCM的周长;(2)若BC=8,且△ABC的面积为40,则△CDM的周长的最小值为.18.(2021秋•双辽市期末)如图,四边形ABCD的对角线AC、BD相交于点E,若△ABC为等边三角形,AD⊥AB,AD=DC=4.(1)求证:BD垂直平分AC;(2)求BE的长;(3)若点F为BC的中点,请在BD上找出一点P,使PC+PF取得最小值;PC+PF的最小值为(直接写出结果).19.(2021秋•台江区期末)如图,已知∠ABC=∠ADC=90°,BC=CD,CA=CE.(1)求证:∠ACB=∠ACD;(2)过点E作ME∥AB,交AC的延长线于点M,过点M作MP⊥DC,交DC的延长线于点P.①连接PE,交AM于点N,证明AM垂直平分PE;②点O是直线AE上的动点,当MO+PO的值最小时,证明点O与点E重合.20.(2021秋•九龙坡区期中)如图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论