江西省吉安市一中2024届数学高三上期末统考模拟试题含解析_第1页
江西省吉安市一中2024届数学高三上期末统考模拟试题含解析_第2页
江西省吉安市一中2024届数学高三上期末统考模拟试题含解析_第3页
江西省吉安市一中2024届数学高三上期末统考模拟试题含解析_第4页
江西省吉安市一中2024届数学高三上期末统考模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省吉安市一中2024届数学高三上期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.的内角的对边分别为,若,则内角()A. B. C. D.2.已知集合,则集合真子集的个数为()A.3 B.4 C.7 D.83.已知复数满足:(为虚数单位),则()A. B. C. D.4.在正方体中,球同时与以为公共顶点的三个面相切,球同时与以为公共顶点的三个面相切,且两球相切于点.若以为焦点,为准线的抛物线经过,设球的半径分别为,则()A. B. C. D.5.已知,则下列不等式正确的是()A. B.C. D.6.已知直线过双曲线C:的左焦点F,且与双曲线C在第二象限交于点A,若(O为坐标原点),则双曲线C的离心率为A. B. C. D.7.若复数z满足,则复数z在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知正四面体外接球的体积为,则这个四面体的表面积为()A. B. C. D.9.已知复数为虚数单位),则z的虚部为()A.2 B. C.4 D.10.已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则()A. B.3 C. D.211.已知某几何体的三视图如右图所示,则该几何体的体积为()A.3 B. C. D.12.已知函数,若关于的方程恰好有3个不相等的实数根,则实数的取值范围为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.连续掷两次骰子,分别得到的点数作为点的坐标,则点落在圆内的概率为______________.14.已知实数,满足约束条件,则的最小值为______.15.已知函数,若关于的方程在定义域上有四个不同的解,则实数的取值范围是_______.16.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为了解广大学生家长对校园食品安全的认识,某市食品安全检测部门对该市家长进行了一次校园食品安全网络知识问卷调查,每一位学生家长仅有一次参加机会,现对有效问卷进行整理,并随机抽取出了200份答卷,统计这些答卷的得分(满分:100分)制出的频率分布直方图如图所示,由频率分布直方图可以认为,此次问卷调查的得分服从正态分布,其中近似为这200人得分的平均值(同一组数据用该组区间的中点值作为代表).(1)请利用正态分布的知识求;(2)该市食品安全检测部门为此次参加问卷调查的学生家长制定如下奖励方案:①得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费:②每次获赠的随机话费和对应的概率为:获赠的随机话费(单位:元)概率市食品安全检测部门预计参加此次活动的家长约5000人,请依据以上数据估计此次活动可能赠送出多少话费?附:①;②若;则,,.18.(12分)如图,在矩形中,,,点分别是线段的中点,分别将沿折起,沿折起,使得重合于点,连结.(Ⅰ)求证:平面平面;(Ⅱ)求直线与平面所成角的正弦值.19.(12分)某商店举行促销反馈活动,顾客购物每满200元,有一次抽奖机会(即满200元可以抽奖一次,满400元可以抽奖两次,依次类推).抽奖的规则如下:在一个不透明口袋中装有编号分别为1,2,3,4,5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球编号一次比一次大(如1,2,5),则获得一等奖,奖金40元;若摸得的小球编号一次比一次小(如5,3,1),则获得二等奖,奖金20元;其余情况获得三等奖,奖金10元.(1)某人抽奖一次,求其获奖金额X的概率分布和数学期望;(2)赵四购物恰好满600元,假设他不放弃每次抽奖机会,求他获得的奖金恰好为60元的概率.20.(12分)在平面直角坐标系中,已知椭圆:()的左、右焦点分别为、,且点、与椭圆的上顶点构成边长为2的等边三角形.(1)求椭圆的方程;(2)已知直线与椭圆相切于点,且分别与直线和直线相交于点、.试判断是否为定值,并说明理由.21.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),将曲线上每一点的横坐标变为原来的倍,纵坐标不变,得到曲线,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,射线与曲线交于点,将射线绕极点逆时针方向旋转交曲线于点.(1)求曲线的参数方程;(2)求面积的最大值.22.(10分)已知等差数列an,和等比数列b(I)求数列{an}(II)求数列n2an⋅a

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

由正弦定理化边为角,由三角函数恒等变换可得.【详解】∵,由正弦定理可得,∴,三角形中,∴,∴.故选:C.【点睛】本题考查正弦定理,考查两角和的正弦公式和诱导公式,掌握正弦定理的边角互化是解题关键.2、C【解析】

解出集合,再由含有个元素的集合,其真子集的个数为个可得答案.【详解】解:由,得所以集合的真子集个数为个.故选:C【点睛】此题考查利用集合子集个数判断集合元素个数的应用,含有个元素的集合,其真子集的个数为个,属于基础题.3、A【解析】

利用复数的乘法、除法运算求出,再根据共轭复数的概念即可求解.【详解】由,则,所以.故选:A【点睛】本题考查了复数的四则运算、共轭复数的概念,属于基础题.4、D【解析】

由题先画出立体图,再画出平面处的截面图,由抛物线第一定义可知,点到点的距离即半径,也即点到面的距离,点到直线的距离即点到面的距离因此球内切于正方体,设,两球球心和公切点都在体对角线上,通过几何关系可转化出,进而求解【详解】根据抛物线的定义,点到点的距离与到直线的距离相等,其中点到点的距离即半径,也即点到面的距离,点到直线的距离即点到面的距离,因此球内切于正方体,不妨设,两个球心和两球的切点均在体对角线上,两个球在平面处的截面如图所示,则,所以.又因为,因此,得,所以.故选:D【点睛】本题考查立体图与平面图的转化,抛物线几何性质的使用,内切球的性质,数形结合思想,转化思想,直观想象与数学运算的核心素养5、D【解析】

利用特殊值代入法,作差法,排除不符合条件的选项,得到符合条件的选项.【详解】已知,赋值法讨论的情况:(1)当时,令,,则,,排除B、C选项;(2)当时,令,,则,排除A选项.故选:D.【点睛】比较大小通常采用作差法,本题主要考查不等式与不等关系,不等式的基本性质,利用特殊值代入法,排除不符合条件的选项,得到符合条件的选项,是一种简单有效的方法,属于中等题.6、B【解析】

直线的倾斜角为,易得.设双曲线C的右焦点为E,可得中,,则,所以双曲线C的离心率为.故选B.7、A【解析】

化简复数,求得,得到复数在复平面对应点的坐标,即可求解.【详解】由题意,复数z满足,可得,所以复数在复平面内对应点的坐标为位于第一象限故选:A.【点睛】本题主要考查了复数的运算,以及复数的几何表示方法,其中解答中熟记复数的运算法则,结合复数的表示方法求解是解答的关键,着重考查了推理与计算能力,属于基础题.8、B【解析】

设正四面体ABCD的外接球的半径R,将该正四面体放入一个正方体内,使得每条棱恰好为正方体的面对角线,根据正方体和正四面体的外接球为同一个球计算出正方体的棱长,从而得出正四面体的棱长,最后可求出正四面体的表面积.【详解】将正四面体ABCD放在一个正方体内,设正方体的棱长为a,如图所示,设正四面体ABCD的外接球的半径为R,则,得.因为正四面体ABCD的外接球和正方体的外接球是同一个球,则有,∴.而正四面体ABCD的每条棱长均为正方体的面对角线长,所以,正四面体ABCD的棱长为,因此,这个正四面体的表面积为.故选:B.【点睛】本题考查球的内接多面体,解决这类问题就是找出合适的模型将球体的半径与几何体的一些几何量联系起来,考查计算能力,属于中档题.9、A【解析】

对复数进行乘法运算,并计算得到,从而得到虚部为2.【详解】因为,所以z的虚部为2.【点睛】本题考查复数的四则运算及虚部的概念,计算过程要注意.10、D【解析】

根据抛物线的定义求得,由此求得的长.【详解】过作,垂足为,设与轴的交点为.根据抛物线的定义可知.由于,所以,所以,所以,所以.故选:D【点睛】本小题主要考查抛物线的定义,考查数形结合的数学思想方法,属于基础题.11、B【解析】由三视图知:几何体是直三棱柱消去一个三棱锥,如图:

直三棱柱的体积为,消去的三棱锥的体积为,

∴几何体的体积,故选B.点睛:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及相关几何量的数据是解答此类问题的关键;几何体是直三棱柱消去一个三棱锥,结合直观图分别求出直三棱柱的体积和消去的三棱锥的体积,相减可得几何体的体积.12、D【解析】

讨论,,三种情况,求导得到单调区间,画出函数图像,根据图像得到答案.【详解】当时,,故,函数在上单调递增,在上单调递减,且;当时,;当时,,,函数单调递减;如图所示画出函数图像,则,故.故选:.【点睛】本题考查了利用导数求函数的零点问题,意在考查学生的计算能力和应用能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

连续掷两次骰子共有种结果,列出满足条件的结果有11种,利用古典概型即得解【详解】由题意知,连续掷两次骰子共有种结果,而满足条件的结果为:共有11种结果,根据古典概型概率公式,可得所求概率.故答案为:【点睛】本题考查了古典概型的应用,考查了学生综合分析,数学运算的能力,属于基础题.14、【解析】

作出满足约束条件的可行域,将目标函数视为可行解与点的斜率,观察图形斜率最小在点B处,联立,解得点B坐标,即可求得答案.【详解】作出满足约束条件的可行域,该目标函数视为可行解与点的斜率,故由题可知,联立得,联立得所以,故所以的最小值为故答案为:【点睛】本题考查分式型目标函数的线性规划问题,属于简单题.15、【解析】

由题意可在定义域上有四个不同的解等价于关于原点对称的函数与函数的图象有两个交点,运用参变分离和构造函数,进而借助导数分析单调性与极值,画出函数图象,即可得到所求范围.【详解】已知定义在上的函数若在定义域上有四个不同的解等价于关于原点对称的函数与函数f(x)=lnx-x(x>0)的图象有两个交点,联立可得有两个解,即可设,则,进而且不恒为零,可得在单调递增.由可得时,单调递减;时,单调递增,即在处取得极小值且为作出的图象,可得时,有两个解.故答案为:【点睛】本题考查利用利用导数解决方程的根的问题,还考查了等价转化思想与函数对称性的应用,属于难题.16、130.15.【解析】

由题意可得顾客需要支付的费用,然后分类讨论,将原问题转化为不等式恒成立的问题可得的最大值.【详解】(1),顾客一次购买草莓和西瓜各一盒,需要支付元.(2)设顾客一次购买水果的促销前总价为元,元时,李明得到的金额为,符合要求.元时,有恒成立,即,即元.所以的最大值为.【点睛】本题主要考查不等式的概念与性质、数学的应用意识、数学式子变形与运算求解能力,以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)估计此次活动可能赠送出100000元话费【解析】

(1)根据正态分布的性质可求的值.(2)设某家长参加活动可获赠话费为元,利用题设条件求出其分布列,再利用公式求出其期望后可得计此次活动可能赠送出的话费数额.【详解】(1)根据题中所给的统计表,结合题中所给的条件,可以求得又,,所以;(2)根据题意,某家长参加活动可获赠话费的可能值有10,20,30,40元,且每位家长获得赠送1次、2次话费的概率都为,得10元的情况为低于平均值,概率,得20元的情况有两种,得分低于平均值,一次性获20元话费;得分不低于平均值,2次均获赠10元话费,概率,得30元的情况为:得分不低于平均值,一次获赠10元话费,另一次获赠20元话费,其概率为,得40元的其情况得分不低于平均值,两次机会均获20元话费,概率为.所以变量的分布列为:某家长获赠话费的期望为.所以估计此次活动可能赠送出100000元话费.【点睛】本题考查正态分布、离散型随机变量的分布列及数学期望,注意与正态分布有关的计算要利用该分布的密度函数图象的对称性来进行,本题属于中档题.18、(Ⅰ)详见解析;(Ⅱ).【解析】

(Ⅰ)根据,,可得平面,故而平面平面.(Ⅱ)过作于,则可证平面,故为所求角,在中利用余弦定理计算,再计算.【详解】解:(Ⅰ)因为,,,平面,平面所以平面,又平面,所以平面平面;(Ⅱ)过作于,则由平面,且平面知,所以平面,从而是直线与平面所成角.因为,,,所以,从而.【点睛】本题考查了面面垂直的判定,考查直线与平面所成角的计算,属于中档题.19、(1)分布见解析,期望为;(2).【解析】

(1)先明确X的可能取值,分别求解其概率,然后写出分布列,利用期望公式可求期望;(2)获得的奖金恰好为60元,可能是三次二等奖,也可能是一次一等奖,两次三等奖,然后分别求解概率即可.【详解】(1)由题意知,随机变量X的可能取值为10,20,40且,,所以,即随机变量X的概率分布为X102040P所以随机变量X的数学期望.(2)由题意知,赵四有三次抽奖机会,设恰好获得60元为事件A,因为60=20×3=40+10+10,所以.【点睛】本题主要考查随机变量的分布列及数学期望,明确随机变量的所有取值是求解的第一步,再求解对应的概率,侧重考查数学建模的核心素养.20、(1)(2)为定值.【解析】

(1)根据题意,得出,从而得出椭圆的标准方程.(2)根据题意设直线方程:,因为直线与椭圆相切,这有一个交点,联立直线与椭圆方程得,则,解得①把和代入,得和,,的表达式,比即可得出为定值.【详解】解:(1)依题意,,,.所以椭圆的标准方程为.(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论