版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省赣州市南康中学2024年数学高三第一学期期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行如图所示的程序框图,若输出的,则①处应填写()A. B. C. D.2.为了贯彻落实党中央精准扶贫决策,某市将其低收入家庭的基本情况经过统计绘制如图,其中各项统计不重复.若该市老年低收入家庭共有900户,则下列说法错误的是()A.该市总有15000户低收入家庭B.在该市从业人员中,低收入家庭共有1800户C.在该市无业人员中,低收入家庭有4350户D.在该市大于18岁在读学生中,低收入家庭有800户3.新闻出版业不断推进供给侧结构性改革,深入推动优化升级和融合发展,持续提高优质出口产品供给,实现了行业的良性发展.下面是2012年至2016年我国新闻出版业和数字出版业营收增长情况,则下列说法错误的是()A.2012年至2016年我国新闻出版业和数字出版业营收均逐年增加B.2016年我国数字出版业营收超过2012年我国数字出版业营收的2倍C.2016年我国新闻出版业营收超过2012年我国新闻出版业营收的1.5倍D.2016年我国数字出版营收占新闻出版营收的比例未超过三分之一4.给出下列三个命题:①“”的否定;②在中,“”是“”的充要条件;③将函数的图象向左平移个单位长度,得到函数的图象.其中假命题的个数是()A.0 B.1 C.2 D.35.已知函数满足,且,则不等式的解集为()A. B. C. D.6.复数,是虚数单位,则下列结论正确的是A. B.的共轭复数为C.的实部与虚部之和为1 D.在复平面内的对应点位于第一象限7.双曲线的渐近线方程是()A. B. C. D.8.“”是“直线与互相平行”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件9.已知函数,则()A.1 B.2 C.3 D.410.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是()A. B. C. D.11.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.设集合,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设(其中为自然对数的底数),,若函数恰有4个不同的零点,则实数的取值范围为________.14.设,则_____,(的值为______.15.若函数满足:①是偶函数;②的图象关于点对称.则同时满足①②的,的一组值可以分别是__________.16.已知复数z1=1﹣2i,z2=a+2i(其中i是虚数单位,a∈R),若z1•z2是纯虚数,则a的值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数f(x)ax﹣lnx(a∈R).(1)若a=2时,求函数f(x)的单调区间;(2)设g(x)=f(x)1,若函数g(x)在上有两个零点,求实数a的取值范围.18.(12分)已知抛物线:的焦点为,过上一点()作两条倾斜角互补的直线分别与交于,两点,(1)证明:直线的斜率是-1;(2)若,,成等比数列,求直线的方程.19.(12分)某商场为改进服务质量,在进场购物的顾客中随机抽取了人进行问卷调查.调查后,就顾客“购物体验”的满意度统计如下:满意不满意男女是否有的把握认为顾客购物体验的满意度与性别有关?若在购物体验满意的问卷顾客中按照性别分层抽取了人发放价值元的购物券.若在获得了元购物券的人中随机抽取人赠其纪念品,求获得纪念品的人中仅有人是女顾客的概率.附表及公式:.20.(12分)在中,角,,所对的边分别是,,,且.(1)求的值;(2)若,求的取值范围.21.(12分)已知向量,.(1)求的最小正周期;(2)若的内角的对边分别为,且,求的面积.22.(10分)已知函数,.(1)讨论的单调性;(2)当时,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
模拟程序框图运行分析即得解.【详解】;;.所以①处应填写“”故选:B【点睛】本题主要考查程序框图,意在考查学生对这些知识的理解掌握水平.2、D【解析】
根据给出的统计图表,对选项进行逐一判断,即可得到正确答案.【详解】解:由题意知,该市老年低收入家庭共有900户,所占比例为6%,则该市总有低收入家庭900÷6%=15000(户),A正确,该市从业人员中,低收入家庭共有15000×12%=1800(户),B正确,该市无业人员中,低收入家庭有15000×29%%=4350(户),C正确,该市大于18岁在读学生中,低收入家庭有15000×4%=600(户),D错误.故选:D.【点睛】本题主要考查对统计图表的认识和分析,这类题要认真分析图表的内容,读懂图表反映出的信息是解题的关键,属于基础题.3、C【解析】
通过图表所给数据,逐个选项验证.【详解】根据图示数据可知选项A正确;对于选项B:,正确;对于选项C:,故C不正确;对于选项D:,正确.选C.【点睛】本题主要考查柱状图是识别和数据分析,题目较为简单.4、C【解析】
结合不等式、三角函数的性质,对三个命题逐个分析并判断其真假,即可选出答案.【详解】对于命题①,因为,所以“”是真命题,故其否定是假命题,即①是假命题;对于命题②,充分性:中,若,则,由余弦函数的单调性可知,,即,即可得到,即充分性成立;必要性:中,,若,结合余弦函数的单调性可知,,即,可得到,即必要性成立.故命题②正确;对于命题③,将函数的图象向左平移个单位长度,可得到的图象,即命题③是假命题.故假命题有①③.故选:C【点睛】本题考查了命题真假的判断,考查了余弦函数单调性的应用,考查了三角函数图象的平移变换,考查了学生的逻辑推理能力,属于基础题.5、B【解析】
构造函数,利用导数研究函数的单调性,即可得到结论.【详解】设,则函数的导数,,,即函数为减函数,,,则不等式等价为,则不等式的解集为,即的解为,,由得或,解得或,故不等式的解集为.故选:.【点睛】本题主要考查利用导数研究函数单调性,根据函数的单调性解不等式,考查学生分析问题解决问题的能力,是难题.6、D【解析】
利用复数的四则运算,求得,在根据复数的模,复数与共轭复数的概念等即可得到结论.【详解】由题意,则,的共轭复数为,复数的实部与虚部之和为,在复平面内对应点位于第一象限,故选D.【点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为.7、C【解析】
根据双曲线的标准方程即可得出该双曲线的渐近线方程.【详解】由题意可知,双曲线的渐近线方程是.故选:C.【点睛】本题考查双曲线的渐近线方程的求法,是基础题,解题时要认真审题,注意双曲线的简单性质的合理运用.8、A【解析】
利用两条直线互相平行的条件进行判定【详解】当时,直线方程为与,可得两直线平行;若直线与互相平行,则,解得,,则“”是“直线与互相平行”的充分不必要条件,故选【点睛】本题主要考查了两直线平行的条件和性质,充分条件,必要条件的定义和判断方法,属于基础题.9、C【解析】
结合分段函数的解析式,先求出,进而可求出.【详解】由题意可得,则.故选:C.【点睛】本题考查了求函数的值,考查了分段函数的性质,考查运算求解能力,属于基础题.10、A【解析】
根据几何概率计算公式,求出中间小三角形区域的面积与大三角形面积的比值即可.【详解】在中,,,,由余弦定理,得,所以.所以所求概率为.故选A.【点睛】本题考查了几何概型的概率计算问题,是基础题.11、B【解析】
或,从而明确充分性与必要性.【详解】,由可得:或,即能推出,但推不出∴“”是“”的必要不充分条件故选【点睛】本题考查充分性与必要性,简单三角方程的解法,属于基础题.12、B【解析】
直接进行集合的并集、交集的运算即可.【详解】解:;∴.故选:B.【点睛】本题主要考查集合描述法、列举法的定义,以及交集、并集的运算,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
求函数,研究函数的单调性和极值,作出函数的图象,设,若函数恰有4个零点,则等价为函数有两个零点,满足或,利用一元二次函数根的分布进行求解即可.【详解】当时,,由得:,解得,由得:,解得,即当时,函数取得极大值,同时也是最大值,(e),当,,当,,作出函数的图象如图,设,由图象知,当或,方程有一个根,当或时,方程有2个根,当时,方程有3个根,则,等价为,当时,,若函数恰有4个零点,则等价为函数有两个零点,满足或,则,即(1)解得:,故答案为:【点睛】本题主要考查函数与方程的应用,利用换元法进行转化一元二次函数根的分布以及.求的导数,研究函数的的单调性和极值是解决本题的关键,属于难题.14、7201【解析】
利用二项展开式的通式可求出;令中的,得两个式子,代入可得结果.【详解】利用二项式系数公式,,故,,故(=,故答案为:720;1.【点睛】本题考查二项展开式的通项公式的应用,考查赋值法,是基础题.15、,【解析】
根据是偶函数和的图象关于点对称,即可求出满足条件的和.【详解】由是偶函数及,可取,则,由的图象关于点对称,得,,即,,可取.故,的一组值可以分别是,.故答案为:,.【点睛】本题主要考查了正弦型三角函数的性质,属于基础题.16、-1【解析】
由题意,令即可得解.【详解】∵z1=1﹣2i,z2=a+2i,∴,又z1•z2是纯虚数,∴,解得:a=﹣1.故答案为:﹣1.【点睛】本题考查了复数的概念和运算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调递减区间为(0,1),单调递增区间为(1,+∞)(2)(3,2e]【解析】
(1)当a=2时,求出,求解,即可得出结论;(2)函数在上有两个零点等价于a=2x在上有两解,构造函数,,利用导数,可分析求得实数a的取值范围.【详解】(1)当a=2时,定义域为,则,令,解得x1,或x1(舍去),所以当时,单调递减;当时,单调递增;故函数的单调递减区间为,单调递增区间为,(2)设,函数g(x)在上有两个零点等价于在上有两解令,,则,令,,显然,在区间上单调递增,又,所以当时,有,即,当时,有,即,所以在区间上单调递减,在区间上单调递增,时,取得极小值,也是最小值,即,由方程在上有两解及,可得实数a的取值范围是.【点睛】本题考查了利用导数研究函数的单调性极值与最值、等价转化思想以及数形结合思想,考查逻辑推理、数学计算能力,属于中档题.18、(1)见解析;(2)【解析】
(1)设,,由已知,得,代入中即可;(2)利用抛物线的定义将转化为,再利用韦达定理计算.【详解】(1)在抛物线上,∴,设,,由题可知,,∴,∴,∴,∴,∴(2)由(1)问可设::,则,,,∴,∴,即(*),将直线与抛物线联立,可得:,所以,代入(*)式,可得满足,∴:.【点睛】本题考查直线与抛物线的位置关系的应用,在处理直线与抛物线位置关系的问题时,通常要涉及韦达定理来求解,本题查学生的运算求解能力,是一道中档题.19、有的把握认为顾客购物体验的满意度与性别有关;.【解析】
由题得,根据数据判断出顾客购物体验的满意度与性别有关;获得了元购物券的人中男顾客有人,记为,;女顾客有人,记为,,,.从中随机抽取人,所有基本事件有个,其中仅有1人是女顾客的基本事件有个,进而求出获得纪念品的人中仅有人是女顾客的概率.【详解】解析:由题得所以,有的把握认为顾客购物体验的满意度与性别有关.获得了元购物券的人中男顾客有人,记为,;女顾客有人,记为,,,.从中随机抽取人,所有基本事件有:,,,,,,,,,,,,,,,共个.其中仅有1人是女顾客的基本事件有:,,,,,,,,共个.所以获得纪念品的人中仅有人是女顾客的概率.【点睛】本小题主要考查统计案例、卡方分布、概率等基本知识,考查概率统计基本思想以及抽象概括等能力和应用意识,属于中档题.20、(1);(2)【解析】
(1)利用正弦定理边化角,结合两角和差正弦公式可整理求得,进而求得和,代入求得结果;(2)利用正弦定理可将表示为,利用两角和差正弦公式、辅助角公式将其整理为,根据正弦型函数值域的求解方法,结合的范围可求得结果.【详解】(1)由正弦定理可得:即(2)由(1)知:,,即的取值范围为【点睛】本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年教育机构校园宣传栏设施采购及安装合同3篇
- 二零二五年度木材防腐处理木工班组承包合同样本4篇
- 2025年食堂食材安全认证与采购合同3篇
- 2025版家居建材行纪合同范本2篇
- 第八章生命体征的评估与护理护理学基础88课件讲解
- 2025年保洁防疫服务协议
- 2025年加盟连锁店经销合作协议范例
- 2025年大型综合市场用水电合同
- 2025年专利知识产权技术权利使用许可转让合同
- 二零二五版闭门会议知识产权授权与保密条款合同3篇
- 2024年萍乡卫生职业学院单招职业技能测试题库标准卷
- 2024年高考数学(理)试卷(全国甲卷)(空白卷)
- DB32-T 4444-2023 单位消防安全管理规范
- 临床三基考试题库(附答案)
- 合同签订执行风险管控培训
- 九宫数独200题(附答案全)
- 人员密集场所消防安全管理培训
- JCT587-2012 玻璃纤维缠绕增强热固性树脂耐腐蚀立式贮罐
- 典范英语2b课文电子书
- 员工信息登记表(标准版)
- 春节工地停工复工计划安排( 共10篇)
评论
0/150
提交评论