电路基础与实践-课后习题及答案节选-曹振东_第1页
电路基础与实践-课后习题及答案节选-曹振东_第2页
电路基础与实践-课后习题及答案节选-曹振东_第3页
电路基础与实践-课后习题及答案节选-曹振东_第4页
电路基础与实践-课后习题及答案节选-曹振东_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课后习题参考答案

1.元器件实验基础

1.通过色环分别求出一下电阻的阻值

1|=R2

RiR2R3

根据表格可以得出:

%:

23x101±5%

治的阻值应该在218Q到241。之间.

R2:

33x102±5%

R2的阻值应该在3.2k。到3.4k。之间.

R3:

68x103±5%

/?3的阻值应该在64.6kO到71.4kfl之间.

如下图左,将数字万用表(DigitalMultimeter,简称DMM)设置为[Q]的测量模式,并测量出

电阻阻值.要注意的是,任何工程测量都存在误差,因此DMM所得出的测量误差可以通过仪

表参数进行计算,本章实验中我们不对此做出详细阐述。

2.如上图右,仔细观察图中的信息,已知滑动变阻器是0-10k,那么绿线端和蓝线端的电

阻为多少?你是怎么知道的?

答:滑动变阻器的总阻值为10kQ即绿线端到黄线端的电阻大小。因为蓝线到黄线端的电阻

为5.8k。,所以绿线端到蓝线端的电阻为4.2k欧姆。

2.欧姆定律

1.如果电压为24V应用在2.2k。的电阻上,则电流是多少?

答:由欧姆定律公式可知:

V

I=R

代入数值:V=24VR=2.2KQ

可以得出电流/=10.9mA

2.如果电阻上的电压为12V,需要多大的电阻来可以得出电流为1.2mA?

答:由欧姆定律公式可以知道:

V

R=7

代入数值:V=12Vl=1.2mA

可以得出电阻R=1OK0

3.根据下图电路的的连接以及仪器显示,不要在直接测量电阻的方法或者读色环的方法

下,能否计算出,所用电阻的阻值?

NO

O'

F

P(

ro

ba

el

MP

o

Ew

Ge

r

OS

u

p

p

l

y

答:从图片可知MEGO提供的电压大小为5V,VEGO测得电流大小为22.72mA。

由欧姆定律公式可以知道:

代入数值:V=5Vl=22.72mA

可以得出电阻R=22O0

4.表格1中,第三列电流是根据计算得出,第四列电流是根据测量得出.两者之间是否足

够接近?两者之间的实验误差是否可以验证欧姆定律以及本实验的正确性.

答:略

5.绘制欧姆定律关系图.根据表格1的数据,在本章结尾处的方格纸中绘制伏安特性图,

也就是I-V曲线.

答:略

6.画出电阻的I-V曲线后,我们可以根据该曲线得出在不同条件下的电流或电压值.比如:

当I=5.6mA,我们可以在曲线上找出对应的S值,根据这个特点,将表格2完成.

⑻通过I-V曲线的斜率可以计算阻值,其方法如下:

斜率(slope)=m=—=-j-=-

XVRK

提问:如果某电阻的I-V曲线斜率为0.001(单位是:西门子),其阻值是多

少?

答:略

(b)计算:

根据⑻中的公式,假设I-V曲线的斜率为m.如果阻值增长,那么对应m应当增加

或是减少?假设某器件的I-V曲线函数的图像几乎是平坦的,那么这是一个导体还

是绝缘体

答:略

绘制电阻的I-V曲线:

电压

3.串联和并联电路

1.在表1和表2中,对比三种方法(计算,测量,欧姆定律)所得到的等效阻值是否足够接

近?

答:略

2.仔细观察下图的电路,根据电源以及万用表的读数,连接下图万用表的正端(红色线

的部分)使得下图的电路连接以及读数都是合理的。

答:因为电路中三个电阻的阻值相同,而MEGO所提供的电压大小为6V,为了使得VEGO

上面的示数为2V,只需要将红色表笔放在靠近黑线(GND)的第一个电阻两端即可。

3.仔细观察下图的电路,根据已知图上的信息和所用电阻都为UQ,判断万用表应该会

显示的值为多少?

,EGOP929|

nr

vu

答:首先由图可知MEGO提供的电压为5.0V,值得注意的是VEG。所测量的值为电流而不

是电压,将电路图转化为如下原理图:

根据计算可以得出并联电阻两端电压为:

1

25

]/并=------3-x5=—v=1.67u

1+2

从而得出VEGO所测的电流为:

1.67V

=1.67mA

1KQ

4.如果在使用VEGO测量等效电阻时连接电源(电源处于工作状态),该方法是否仍然

有效?可以通过实验方法进行尝试,并得出相关结论.

答:略。

5.推导下方所示电路的总电阻%的表达式

答:

首先求电阻R1与电阻/?2并联大小为:

1_11_R1+&

R并R]&&&

+/?2

在求出电阻也与电阻反串联大小为:

R串=/?3+/?4

最后求出场的大小,其大小为电阻R并与电阻R国的并联为:

111比+/?21

--=----1----=--------1--------

RTR并R串R1R2R3+R4

R_一1&(一3+R。

’=(%+/?2)伊3+/?4)

4.分压器&分流器

1.在表1和表2中,对比计算结果与实际测量值,两者是否足够接近并可以用来验证本

次实验的正确性?

答:略

2.设计电路时,假设R3两端的电压为4V.通过下图给出的参数计算出R3的电阻值.我们

也可以在面包板搭建电路并验证结果.

计算

答:设电阻R3的大小为X

根据电阻分压可列:

%

xV=V3

R1+R2+R3

代入数值:

X

-------------x9V=4V

1K+3.3K+X

X=3.44K0

3.能否观察实验图中电压表的显示,以及色环电阻,判断出电源提供的值?

答:根据色环可以判断出从黑线(GND)到电源线电阻大小依次为:3.3KQ

4.7KQ、1.5KQ0

根据电阻分压原则可以得出:

4.7k。

--------------------------------XV=217

3.3kQ+4.7k£l+1.5kQ

计算可以得出:

V=4V

4.构建以下电路,通过测量方式完成表3,并依次回答以下问题:

(a)使用VEGO测量节点a与节点c之间的电压.可将黑色探针连接到c,红色探针连

接到a.该测量值记录在表3的第2列V,处.

(b)使用同样方法测量W(另一端仍然接c),并将测量结果纪录在表3的第2列中.请

注意,R3此时处于开路状态,因为b处并不构成电流回路.

(c)现在从面包板上完全移除R3,然后测量\A并将其值记录在表3第3列.

根据上述测量,Va和Vb之间的电压差(也称压降)是多少?此时如果采用分压电路的方法计

算W或者Vz是否仍然有效?如果此时将b端接至c构成一个回路,V2会降低还是增加?

答:略

5.瓦特定律

根据第一部分电路

1.对比R的实际功耗与其额定功率.对比灯泡的实际功耗与其额定功率.此操作此电路是

否安全?

答:略

2.根据测量和计算结果,MEGO此时的输出功率是多少?

答:略

根据第二部分电路

3.在第二部分的第3步中,为什么需要通过增加电源电压才能使得两个灯泡维持同样的

亮度?

答:因为灯泡并联电阻减小,在电路中分的电压减小,为了保持灯泡亮度相同,则需要增加

电压。

4.将R的功耗与其额定功率进行比较,该操作是否安全?

5.假设MEGO已充满电,这意味着它的电池容量为7瓦时,请问MEGO能持续为电路供

电多久?(假设MEGO的转换率为80%).

6.基尔霍夫定律

1.根据表1中的电压测量结果,写出回路a和回路b的KVL等式.将测量的电压带入该

KVL方程,看看结果是否足够接近0?

答:

回路a的KVL方程:

^Source--k=。

回路b的KVL方程:

%一%一%=0

2.写出最外部的回路的KVL方程该回路为:列出该回路后,将测

量电压代入KVL的等式,验证结果是否正确.

答:

最外部回路的KVL方程:

^Source~限1+限3+限4=0

3.使用表1中的电流测量结果,写出节点b的KCL等式,将您的测量结果带入等式后,是

否满足总和为零?

答:略

4.在图3中,我们在定义KCL时可任意分配I”12和k的电流方向.如果想确定电流的

实际方向,则可利用正负号进行比对.例如,如果测量值为正,则我们设定的电流方

向与实际电流方向等同,而如果结果为负,则说明实际电流方向与假设方向相反.在表

2中,请判断电路中各分支的实际电流.

表格2

自定义电流方

测量电流值(mA)实际电流方向

Vsource由地至a

Ri由a至b

由b至地

R2

由c至b

R3

R4由地至c

7.叠加定理

1.对比表格1中%1各b的测量值和计算值,并阐述所得出的结论.

答:略

2.假设一个电路有5个独立的电压源,从理论上讲,我们可以将其拆分出多少个子电路?

在这里简单阐述求解该电路的方法过程.

答:从理论上讲可以拆分出5个子电路,由叠加定理可为了考虑五个电压源对该电路的影响

可以通过将电压源设置为零的方法来进行求解,这样就能够得到五个不同的子电路。

3.以下电路含有三个独立电源.通过叠加原理,分别画出简化后的子电路.

答:

使用叠加定理对该电路进行分析:将电压源短路,电流源断路。

子电路1:

将电压源匕oizrcel短路得到子电路1:

子电路2:

将电压源匕owce2短路得到子电路2:

子电路3:

将电流源/source断路得到子电路3:

8.戴维南定律

1.对于图8.17,更改组件值,以使Ri=2.0kQ,R2=2.0kQ,R3=3.7kQ,RL=1.0kQ和Vs-

=10V,如果我们选择与之前相同的观察点匕‘和‘b',那么新的V小和R”、是多少?

计算:

答:

将面包板上面搭建的电路转为电路原理图如下图所示:

转化后的电路图如下图

因为观察点为a、b两端,我们将电阻&断路、电源匕onrce进行短路的到如下图所示

电路图

由上图可以看出电阻凡人的大小等于电阻的值加上电阻&与氏2并联之后的值。

Rh=7?3+7;--丁

tm38+以

代入数值得出:

Rth=4.7kQ

求解a、b两端之间的电压时,我们将点电阻两端开路。得到如下电路图

因为a、b两端开路,所以电流只流经电阻&、因为电阻公公/?3串联之后在与电阻氏2

并联。从而得到

R

Vo=10-X-25V

&%+R2

Rth.

Rth=5Vx2.8V

R3+Rth

2.对于以下所示的电路,使用Ri=2.0kQ,R2=2.0kQ,R3=3.7kQ,Ri=1kQ和VsC12

V,确定Vm和Re的值并绘制戴维南等效电路。请注意,此时观察点匕,和b的位置不

同于之前。

计算:

答:

根据戴维南等效定理,求解观察点a、b两端的等效时,先将电源短路。得到如下电路图

W

从上图中得到电阻R口的大小为:

1_

Rm8R3+RL

代入数值为:

Rth=1.4KQ

求两端点a、b之间的电压匕八时将电路化简为:

从电路图中可知电压匕八为电阻/?3、&共同分的电压:

R3+RL

=12Vx

Vth

RI+R3+RL

Vth=8.41/

等效戴维南电路为:

9.最大功率传输

1.本题给出了一个较为复杂的电路(左),该电路接入了一个负载&根据所学的内容,在

计算最大功率传输时,我们通常使用一个电压与电阻串联的模型(右).回忆之前所学

的内容,右侧的等效电路还有什么名称?右侧电路中的R还有什么名称?

答:右侧的等效电路可以称为戴维南等效电路,电阻R也称为戴维南等效电阻。

2.对于一个戴维南等效电路来说,当接入负载R时,该负载为何值时,整个电路的传输

功率最大?

答:负载电阻&为戴维南等效电阻时,整个电路的传输功率最大。

3.假设负载电阻所消耗的功率为PL,而电压源的输出功率为PSOURCE.参照图1中的电路,

当负载达到最大功率时,求出Pl和PsOURCE之间的关系.提示:可以使用瓦特定律依次推

导功率.

答:

根据参考电路:

R

-----------------------

-------X-----

当负载电阻R1的值与串联电阻R相同时,可以通过以下步骤计算传递到Ri上的功率:

RL=R

计算中的电源输入:

_(.^source)2(Vsource^2

^source

=RL+R2&

^source=2P/,

4.观察以下曲线(纵轴为负载功率,横轴为负载值).在图表上找到功率最大值时所对应的

负载阻值.现在,如果我们要将负载功率减小到原有最大传输功率的50%,则Ri的取

值有可能是多少?

答:由图表可以知道当负载RL=100。时,功率最大。将负载功率减小到原有最大

传输功率的50%时负载RL=580。

5.最后将表1中的数据在下方绘制成图表.可自定义表格横轴与纵轴的单位长度.

画图

电阻9)

10.诺顿定理

1.对比扃和RN的计算值与测量值.

答:略

2.使用IN和RN的计算值和测量值来分别绘制诺顿等效电路.

答:略

3.在理论计算的诺顿电路中接入负载Ri=100Q.计算此时流过Ri的电流,将该电流记作

『calculated.比较该计算值与表1第5列的测量值.

计算:

答:略

4.将图10.17的电路构建出诺顿等效电路Vsos=12V,Ri=3.3kQ,R2=3300,R3=

200Q,Ri=100Q.注意本题中的观察点.计算卜和RN的值.

图10.17:由上述电路构造的诺顿等效电路

计算:

从a、b两端的观察,同时将电压源进行短路得到如下电路图

可以计算出:

代入数值的:

RN=275Q

将电路图化简为下图所示电路:

由图可知a、b两个端子之间短路,电流不会流经电阻/?3、RL。

所以电流大小为:

V12V

人=瓦=旃=36移

11.网络分析法

L根据表2中计算的网络电流la和L现在我们需要确定通过R3的实际电流.在下方写出

计算过程,并计算出通过R3实际的电流大小与电流方向.

答:略

2.观察以下电路.将Vz设置成9V,Vsource?设置成6V.选用Ri=1.2kQ,R2=2.0kQ,

R3=3.3kQ

(a)根据以下指定的网络电流方向,写出网络a和网络b的KVL公式.

答:回路a按照逆时针方向:

-%—匕一^sourcel~。

一”3一%必—^sourcel=。

回路b按照顺时针方向:

一匕一%一source!~。

~lbR3~lbR2~^source!=0

(b)根据上题的KVL公式,计算网络电流I,和

答:由上面两个公式:

Ia=-2mA

说明电流/a是逆时针流动大小为2mA。

电流:

Ib——1.1mA

说明电流〃是顺时针流动大小为1.1mA。

(c)计算R3的实际电流,即混的方向和电流值.

答:友3的方向为从上到下,大小为3.1mA

12.节点电压法

1.根据表2,确定Rx,R2,和Rs中实际流通电流的大小和方向.

答:略

2.参见图12.12,其中,Vsou的=9V,Vsource2=6V,Ri=1.2kQ,R2=2.0kQ,Ra=3.3kQ.

(a)根据图中采用的电流方向,列出节点Vnodel处的KCL公式

图12.12:采用另一组随机设定的电流方向

计算:

将电流人定义为流出节点nodel的电流,电流%、定义为流入节点nodel的电流

使用基尔霍夫电流定律的:

72+’3=’1

(b)对上述KCL方程组求解,并计算电路中各分支的真实电流(表明电流方向).

计算:

将%round作为参考点,

^nodel-Vsourcel

A=

Ri

^Ground~^nodel-^source2

R2

^Ground-匕oldel

,3

得出:

Vnodel=4.36V

=-3.8mA

l2=-5.18HL4

/3=1.32mA

电流A的方向为流入节点nodel,大小为3.8rn4;电流%的方向为流出节点nodel,大小为

5.18zn4;电流与的方向为流入节点nodel,大小为1.32mA。

3.参见图12.13,其中Vsourcel=9V,V5ource2=6V,Ri=1.2kQ,R2=2.0kQ,R3=3.3kQ.与图

1相比,此题中V—发生改变.使用节点电压法来对电路中各电流进行求解.

图12.13:电压源2的方向被改变

计算:

将电流。定义为流进点nodel的电流,电流定义为流出点nodel的电流

使用基尔霍夫电流定律的:

,2+’3=’1

通过欧姆定律,可以得到:

^sourcel-^nodel

,1=

&

^source!+匕iodel

72=

R2

.Kiodel—^Ground

/o=--------------------------

R3

代入数值可得:

Vnodel=2.75V

0=5.2mA

l2=4.375mA

/3=0.83mA

电流人的方向为流进节点nodel大小为5.2mA;电流/2的方向为流出节点nodel大小

为4.375mA;电流的方向为流出节点nodel大小为0.83mA

13.惠斯通电桥

1.参照图13.6(a),假设Ri,Rzand总分别为550Q,lkQ,10kQ,则Rx的值为多少时可

以使惠斯通电桥平衡?写出计算过程.

图13.6(a)

答:由惠斯通电桥平衡的特点只需要%=匕即可:

=—、,R2

%一VS0UrCe-~+R

=Vsourcep十R

代入数值可以求得:

lfcfl

%=6"]一+055-=3.”

从而得出:

Rx=5.5K

2.已知Vsource=6V,Ri=1.2kQ,R2=l.OkQ,R3=330Q,且R*未知.现假设b点和d点的

压降Vw的测量为IV.计算R*的阻值.

计算:

答:使用分压电路计算b和d的电压:

、,_、,R2

Vb-Vsourcep_+R,

_Rx

Vd-VsourceR3+R

计算b和d的压降:

Vbd=Vsource-R^TR;)

代入数值得出:

Rx=133。

14.电容

1.对比表2中的测量值和计算值,两者是否接近?

答:略。

2.以下是一个新的电路.其中,Vsource=10V,Ri=IkQ,R2=1000,Cl=100uF.当电容充满

电后,a的最大电压是多少?将计算过程写在下方.

计算:

答:因为电容C1与电阻&是并联连接的,当电容两端充满时,电容两端的电压等于电阻R2

两端的电压

R2

%=VRZ=

代入数值求出:

VC1=0.9V

3.计算该电路中的总电容,并在下方画出等效电路.其中Vswce=10V,Ci=100uF,c2=

220uF,C3=10uF.

C2=FC3

计算:

答:总的电容大小为:

=—+rxr

忘GC2+C3

代入数值得:

。息=6.7UF

等效电路

Vsource

15.RC电路

1.假设R「100kQ,R?=70kQ,Q=100uF.假设电容器最初是空的,并且开始时

Vsowce设置为9V(t=0).请回答以下问题:

(a)电容器充满电后,请确定电容器的最终电压.

答:因为电容C1与电阻/?2是并联连接的,当电容两端充满时,电容两端的电压等于电阻R2

两端的电压

R2

代入数值求出:

Vq=0.9V

(b)请得出电路的时间常数.(提示:使用戴维南定理去求解时间常数)

答:

首先使用戴维南定理求出从电容两端看进去的等效电压以及电阻两端点分别记为点a、点b:

电路图如图所示:

可以知道电阻:

11111170

-----------卜——--------+.......--------KC

Rth%R2100KH70KC7000

Rth=41KG

求解从a、b两端看进去的等效戴维南电压,电路如下图所示:

NV

从而得出:

R2

匕,=^sourceXR+R=0.9V

由时间常数T的定义知:

T=RC

代入数值:

T=4.1s

2.假设&=50kQ,Ci=100uF.假设电容器最初未充电,并且开始时丫到侬设置为5V(t

=0).请得出电容器在充电一半的时间.

计算:

答:

电路网络的时间常数为

T=RC=(50KC)(100回)=5s

因为电容器是充电一半此时电容两端的电压为2.5V

由公式:

Vc(t)==Vss(1-ef

代入数值解得:

t—3.5s

16.电感器

1.计算以下电路的总电感,并在下方画出等效的电路.其中,Vsoue=10V,L=100mH,

=220mH,Ls=10mH.

T

计算:

答:首先计算出电感22、工3并联的值。

111

----=-----1----

乙23乙3L?

代入数值:

£23=9.5mH

从而得出总的电感:

Lw=L]+L23—109.5mH

等效的电路如下图所示

Vsouroe

/

Y

YL

Y

X

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论