版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
案例研究:供给与选址某公司有6个建筑工地要开工,每个工地的位置〔用平面坐标系a,b表示,距离单位:千米〕及水泥日用量d(吨)由下表给出。目前有两个临时料场位于A(5,1),B(2,7),日储量各有20吨。假设从料场到工地之间均有直线道路相连。〔1〕试制定每天的供给方案,即从A,B两料场分别向各工地运送多少吨水泥,使总的吨千米数最小。〔2〕为了进一步减少吨千米数,打算舍弃两个临时料场,改建两个新的,日储量各为20吨,问应建在何处,节省的吨千米数有多大?编辑课件〔一〕、建立模型
记工地的位置为(ai,bi),水泥日用量为di,i=1,…,6;料场位置为(xj,yj),日储量为ej,j=1,2;从料场j向工地i的运送量为Xij。当用临时料场时决策变量为:Xij,当不用临时料场时决策变量为:Xij,xj,yj。编辑课件〔二〕使用临时料场的情形
使用两个临时料场A(5,1),B(2,7).求从料场j向工地i的运送量为Xij,在各工地用量必须满足和各料场运送量不超过日储量的条件下,使总的吨千米数最小,这是线性规划问题.线性规划模型为:设X11=X1,X21=X2,,X31=X3,X41=X4,X51=X5,,X61=X6X21=X7,X22=X8,,X32=X9,X42=X10,X52=X11,,X62=X12
编写程序gying1.m编辑课件其详细的程序为:c1=sqrt((5-1.25)^2+(1-1.25)^2);c2=sqrt((5-8.75)^2+(1-0.75)^2);c3=sqrt((5-0.5)^2+(1-4.75)^2);c4=sqrt((5-5.75)^2+(1-5)^2);c5=sqrt((5-3)^2+(1-6.5)^2);c6=sqrt((5-7.25)^2+(1-7.25)^2);c7=sqrt((2-1.25)^2+(7-1.25)^2);c8=sqrt((2-8.75)^2+(7-0.75)^2);c9=sqrt((2-0.5)^2+(7-4.75)^2);c10=sqrt((2-5.75)^2+(7-5)^2);c11=sqrt((2-3)^2+(7-6.5)^2);c12=sqrt((2-7.25)^2+(7-7.25)^2);c=[c1;c2;c3;c4;c5;c6;c7;c8;c9;c10;c11;c12];A=[111111000000;000000111111];B=[20;20];Aeq=[100000100000;010000010000;001000001000;000100000100;000010000010;000001000001];Beq=[3;5;4;7;6;11];vlb=[0;0;0;0;0;0;0;0;0;0;0;0];[x,f]=linprog(c,A,B,Aeq,Beq,vlb)编辑课件计算结果为:x=[3.00005.00000.00007.00000.00001.00000.00000.00004.00000.00006.000010.0000]’fval=135.2815编辑课件〔三〕改建两个新料场的情形
改建两个新料场,要同时确定料场的位置(xj,yj)和运送量Xij,在同样条件下使总吨千米数最小。这是非线性规划问题。非线性规划模型为:编辑课件设X11=X1,X21=X2,,X31=X3,X41=X4,X51=X5,,X61=X6X21=X7,X22=X8,,X32=X9,X42=X10,X52=X11,,X62=X12x1=X13,y1=X14,x2=X15,y2=X16
〔1〕先编写M文件liaoch.m定义目标函数。functiony=liaoch(x)y=x(1)*sqrt((x(13)-1.25)^2+(x(14)-1.25)^2)+x(2)*sqrt((x(13)-8.75)^2+(x(14)-0.75)^2)+x(3)*sqrt((x(13)-0.5)^2+(x(14)-4.75)^2)+x(4)*sqrt((x(13)-5.75)^2+(x(14)-5)^2)+x(5)*sqrt((x(13)-3)^2+(x(14)-6.5)^2)+x(6)*sqrt((x(13)-7.25)^2+(x(14)-7.25)^2)+x(7)*sqrt((x(15)-1.25)^2+(x(16)-1.25)^2)+x(8)*sqrt((x(15)-8.75)^2+(x(16)-0.75)^2)+x(9)*sqrt((x(15)-0.5)^2+(x(16)-4.75)^2)+x(10)*sqrt((x(15)-5.75)^2+(x(16)-5)^2)+x(11)*sqrt((x(15)-3)^2+(x(16)-6.5)^2)+x(12)*sqrt((x(15)-7.25)^2+(x(16)-7.25)^2);(2)取初值为线性规划的计算结果及临时料场的坐标:x0=[35070100406105127]';编写主程序gying2.m.编辑课件(3)计算结果为:x=[3.00005.00004.00007.00001.0000000005.000011.00005.69594.92857.25007.7500]fval=89.8835注意初始点的选取编辑课件某厂向用户提供发动机,合同规定,第一、二、三季度末分别交货40台、60台、80台.每季度的生产费用为〔元〕,其中x是该季生产的台数.假设交货后有剩余,可用于下季度交货,但需支付存储费,每台每季度c元.工厂每季度最大生产能力为100台,第一季度开始时无存货,设a=5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年城市轨道交通建设与维护合同
- 地源热泵合同模版
- 2024版光纤宽带网络建设与维护合同2篇
- 2024年度电气工程进度付款合同2篇
- 2024年度丙方物流服务提供合同标的甲方货物运输
- 二零二四年度博物馆布展材料环保检测合同
- 二零二四年度广告发布合同的广告内容、发布媒介与费用结算
- 二零二四年度版权购买与授权合同:音乐产业
- 二零二四年度高端设备制造技术引进合同
- 二零二四年餐饮行业竞争性谈判合同
- 《说明文特点及阅读方法》课件(共17张)语文八年级上册
- 公共资源交易中心信息化项目大数据平台设计方案
- 教师教育教学工作评价表
- 争做新时代好少年主题班会课件
- 饮食行为问卷(DEBQ)
- 眼球摘除术后护理查房
- 医院院长一岗双责述职报告
- 西泠版五年级书法上册《第10课 山字头与京字头》教学设计
- 北京市医疗服务收费项目
- 四上科学3.4《弹簧测力计》教学设计(新课标)
- 生物统计及试验设计课件
评论
0/150
提交评论