版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
案例研究:供给与选址某公司有6个建筑工地要开工,每个工地的位置〔用平面坐标系a,b表示,距离单位:千米〕及水泥日用量d(吨)由下表给出。目前有两个临时料场位于A(5,1),B(2,7),日储量各有20吨。假设从料场到工地之间均有直线道路相连。〔1〕试制定每天的供给方案,即从A,B两料场分别向各工地运送多少吨水泥,使总的吨千米数最小。〔2〕为了进一步减少吨千米数,打算舍弃两个临时料场,改建两个新的,日储量各为20吨,问应建在何处,节省的吨千米数有多大?编辑课件〔一〕、建立模型
记工地的位置为(ai,bi),水泥日用量为di,i=1,…,6;料场位置为(xj,yj),日储量为ej,j=1,2;从料场j向工地i的运送量为Xij。当用临时料场时决策变量为:Xij,当不用临时料场时决策变量为:Xij,xj,yj。编辑课件〔二〕使用临时料场的情形
使用两个临时料场A(5,1),B(2,7).求从料场j向工地i的运送量为Xij,在各工地用量必须满足和各料场运送量不超过日储量的条件下,使总的吨千米数最小,这是线性规划问题.线性规划模型为:设X11=X1,X21=X2,,X31=X3,X41=X4,X51=X5,,X61=X6X21=X7,X22=X8,,X32=X9,X42=X10,X52=X11,,X62=X12
编写程序gying1.m编辑课件其详细的程序为:c1=sqrt((5-1.25)^2+(1-1.25)^2);c2=sqrt((5-8.75)^2+(1-0.75)^2);c3=sqrt((5-0.5)^2+(1-4.75)^2);c4=sqrt((5-5.75)^2+(1-5)^2);c5=sqrt((5-3)^2+(1-6.5)^2);c6=sqrt((5-7.25)^2+(1-7.25)^2);c7=sqrt((2-1.25)^2+(7-1.25)^2);c8=sqrt((2-8.75)^2+(7-0.75)^2);c9=sqrt((2-0.5)^2+(7-4.75)^2);c10=sqrt((2-5.75)^2+(7-5)^2);c11=sqrt((2-3)^2+(7-6.5)^2);c12=sqrt((2-7.25)^2+(7-7.25)^2);c=[c1;c2;c3;c4;c5;c6;c7;c8;c9;c10;c11;c12];A=[111111000000;000000111111];B=[20;20];Aeq=[100000100000;010000010000;001000001000;000100000100;000010000010;000001000001];Beq=[3;5;4;7;6;11];vlb=[0;0;0;0;0;0;0;0;0;0;0;0];[x,f]=linprog(c,A,B,Aeq,Beq,vlb)编辑课件计算结果为:x=[3.00005.00000.00007.00000.00001.00000.00000.00004.00000.00006.000010.0000]’fval=135.2815编辑课件〔三〕改建两个新料场的情形
改建两个新料场,要同时确定料场的位置(xj,yj)和运送量Xij,在同样条件下使总吨千米数最小。这是非线性规划问题。非线性规划模型为:编辑课件设X11=X1,X21=X2,,X31=X3,X41=X4,X51=X5,,X61=X6X21=X7,X22=X8,,X32=X9,X42=X10,X52=X11,,X62=X12x1=X13,y1=X14,x2=X15,y2=X16
〔1〕先编写M文件liaoch.m定义目标函数。functiony=liaoch(x)y=x(1)*sqrt((x(13)-1.25)^2+(x(14)-1.25)^2)+x(2)*sqrt((x(13)-8.75)^2+(x(14)-0.75)^2)+x(3)*sqrt((x(13)-0.5)^2+(x(14)-4.75)^2)+x(4)*sqrt((x(13)-5.75)^2+(x(14)-5)^2)+x(5)*sqrt((x(13)-3)^2+(x(14)-6.5)^2)+x(6)*sqrt((x(13)-7.25)^2+(x(14)-7.25)^2)+x(7)*sqrt((x(15)-1.25)^2+(x(16)-1.25)^2)+x(8)*sqrt((x(15)-8.75)^2+(x(16)-0.75)^2)+x(9)*sqrt((x(15)-0.5)^2+(x(16)-4.75)^2)+x(10)*sqrt((x(15)-5.75)^2+(x(16)-5)^2)+x(11)*sqrt((x(15)-3)^2+(x(16)-6.5)^2)+x(12)*sqrt((x(15)-7.25)^2+(x(16)-7.25)^2);(2)取初值为线性规划的计算结果及临时料场的坐标:x0=[35070100406105127]';编写主程序gying2.m.编辑课件(3)计算结果为:x=[3.00005.00004.00007.00001.0000000005.000011.00005.69594.92857.25007.7500]fval=89.8835注意初始点的选取编辑课件某厂向用户提供发动机,合同规定,第一、二、三季度末分别交货40台、60台、80台.每季度的生产费用为〔元〕,其中x是该季生产的台数.假设交货后有剩余,可用于下季度交货,但需支付存储费,每台每季度c元.工厂每季度最大生产能力为100台,第一季度开始时无存货,设a=5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 硬笔书法黑板课程设计
- 珍惜粮食绘画课程设计
- 2024年协议离婚法律文件起草及法律咨询合同3篇
- 石家庄空调工程课程设计
- 箱体类课程设计
- 淘宝减速器课程设计
- 橙汁换热器课程设计
- 《16-19世纪英国土地制度变迁研究》
- 画轴照片课程设计思路
- 《小额诉讼制度的改进建议》
- 《城市违法建设治理研究的文献综述》2100字
- 《XL集团破产重整方案设计》
- 智慧金融合同施工承诺书
- 《基于Java web的网上招聘系统设计与实现》10000字(论文)
- 2024年1月国家开放大学法律事务专科《民法学(1)》期末纸质考试试题及答案
- 【MOOC】模拟电子技术基础-华中科技大学 中国大学慕课MOOC答案
- 国家开放大学电大本科《工程经济与管理》2023-2024期末试题及答案(试卷号:1141)
- TBT3134-2023机车车辆驱动齿轮箱 技术要求
- 美国史智慧树知到期末考试答案章节答案2024年东北师范大学
- 中国动画之经典赏析PPT课件
- 浙江省杭州市2021-2022学年九年级(上)期末科学试题【含答案】
评论
0/150
提交评论