版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
探究:3张奖券中只有1张能中奖,现分别由3名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比其他同学小?分析:一般地,我们用W来表示所有基本事件的集合,叫做基本事件空间(或样本空间)一般地,n(A)表示事件A包含的基本事件的个数第一页第二页,共19页。思考:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名抽到中奖奖券的概率又是多少?分析:不妨设“第一名同学没有抽到中奖奖券”为事件A,注:P(B|A)表示在事件A发生的条件下B发生的概率你知道第一名同学的抽奖结果为什么会影响最后一名同学的抽奖结果吗?第二页第三页,共19页。分析:若不知道第一名同学的抽奖结果,则样本空间为、若知道了第一名同学的抽奖结果,则样本空间变成但因为最后一名中奖的情况只有一种{NNY}故概率会发生变化思考:你知道第一名同学的抽奖结果为什么会影响最后一名同学的抽奖结果吗?第三页第四页,共19页。P(B)以试验下为条件,样本空间是二、内涵理解:ABP(B|A)以A发生为条件,样本空间缩小为AP(B|A)相当于把A看作新的样本空间求AB发生的概率样本空间不一样为什么上述例中P(B|A)≠P(B)?第四页第五页,共19页。分析:求P(B|A)的一般思想
因为已经知道事件A必然发生,所以只需在A发生的范围内考虑问题,即现在的样本空间为A。
因为在事件A发生的情况下事件B发生,等价于事件A和事件B同时发生,即AB发生。故其条件概率为
为了把条件概率推广到一般情形,不妨记原来的样本空间为W,则有第五页第六页,共19页。一般地,设A,B为两个事件,且P(A)>0,则称为在事件A发生的条件下,事件B发生的条件概率。一般把P(B|A)读作A发生的条件下B的概率。注意:(1)条件概率的取值在0和1之间,即0≤P(B|A)≤1(2)如果B和C是互斥事件,则
P(B∪C|A)=P(B|A)+P(C|A)(3)要注意P(B|A)与P(AB)的区别,这是分清条件概率与一般概率问题的关键。条件概率的定义:在原样本空间的概率第六页第七页,共19页。概率
P(B|A)与P(AB)的区别与联系联系:事件A,B都发生了区别:
样本空间不同:在P(B|A)中,事件A成为样本空间;在P(AB)中,样本空间仍为W。第七页第八页,共19页。例1、在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题,求:(1)第一次抽取到理科题的概率;(2)第一次和第二次都抽取到理科题的概率;解:设第1次抽到理科题为事件A,第2次抽到理科题为事件B,则第1次和第2次都抽到理科题为事件AB.(1)从5道题中不放回地依次抽取2道的事件数为第八页第九页,共19页。例1、在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题,求:(1)第一次抽取到理科题的概率;(2)第一次和第二次都抽取到理科题的概率;解:设第1次抽到理科题为事件A,第2次抽到理科题为事件B,则第1次和第2次都抽到理科题为事件AB.第九页第十页,共19页。例1、在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题,求:(1)第一次抽取到理科题的概率;(2)第一次和第二次都抽取到理科题的概率;(3)在第一次抽到理科题的条件下,第二次抽到理科题的概率。(3)解法一:由(1)(2)可得,在第一次抽到理科题的条件下,第二次抽到理科题的概率为第十页第十一页,共19页。例1、在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题,求:(1)第一次抽取到理科题的概率;(2)第一次和第二次都抽取到理科题的概率;(3)在第一次抽到理科题的条件下,第二次抽到理科题的概率。解法二:因为n(AB)=6,n(A)=12,所以解法三:第一次抽到理科题,则还剩下两道理科、两道文科题故第二次抽到理科题的概率为1/2第十一页第十二页,共19页。练习:甲乙两地都位于长江下游,根据一百多年的气象记录,知道甲乙两地一年中雨天所占的比例分别为20%和18%,两地同时下雨的比例为12%,问:(1)乙地为雨天时甲地也为雨天的概率是多少?(2)甲地为雨天时乙地也为雨天的概率是多少?解:设A={甲地为雨天},B={乙地为雨天},则P(A)=20%,P(B)=18%,P(AB)=12%,第十二页第十三页,共19页。练习:甲乙两地都位于长江下游,根据一百多年的气象记录,知道甲乙两地一年中雨天所占的比例分别为20%和18%,两地同时下雨的比例为12%,问:(3)甲乙两市至少一市下雨的概率是多少?∵{甲乙两市至少一市下雨}=A∪B而P(A∪B)=P(A)+P(B)-P(AB)=20%+18%-12%=26%∴甲乙两市至少一市下雨的概率为26%解:设A={甲地为雨天},B={乙地为雨天},则P(A)=20%,P(B)=18%,P(AB)=12%,第十三页第十四页,共19页。例3、一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个,某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率。第十四页第十五页,共19页。例3、一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个,某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率。第十五页第十六页,共19页。练习1:厂别甲厂乙厂合计数量等级合格品次品合计
一批同型号产品由甲、乙两厂生产,产品结构如下表:(1)从这批产品中随意地取一件,则这件产品恰好是次品的概率是_________;(2)在已知取出的产品是甲厂生产的,则这件产品恰好
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度赎楼贷款合同正规范本6篇
- 2024版医疗器械公司劳动合同书模板
- 2024版运输补充协议书
- 培养小学生的创新阅读能力的方法探讨
- 二零二五年度租赁合同-房东房产租赁市场预测协议3篇
- 成年人做数学试卷
- 当代小学生道德教育中的问题与对策分析
- 2025年度设备维修服务合同标的解析2篇
- 崇仁一中小升初数学试卷
- 2023-2024年企业主要负责人安全培训考试题及参考答案(能力提升)
- 2024年秋季新统编版七年级上册道德与法治全册教案
- 20以内的加法口算练习题4000题 210
- 2024年涉密人员考试试题库保密基本知识试题附答案(考试直接用)
- 2024年桂林中考物理试卷
- 储能投资方案计划书
- HG∕T 4286-2017 搪玻璃换热管
- 二年级上册100道口算题大全(全册完整版18份每份100道)
- HJ212-2017污染物在线监控(监测)系统数据传输标准
- 电力外线施工方案
- 基于Android平台人脸识别系统的设计与实现
- 【供应链视角下的光明乳业存货管理问题研究9700字】
评论
0/150
提交评论