离子注入和快速退火工艺_第1页
离子注入和快速退火工艺_第2页
离子注入和快速退火工艺_第3页
离子注入和快速退火工艺_第4页
离子注入和快速退火工艺_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

离子注入和快速退火工艺(总13页)本页仅作为文档封面,使用时可以删除Thisdocumentisforreferenceoiilv-rai21veaf.Maich

离子注入和快速退火工艺离子注入是一种将带电的且具有能量的粒子注入衬底硅的过程。注入能量介于IkeV到IMeV之间,注入深度平均可达10nm~10um,离子剂量变动范围从用于阈值电压调整的1012/cm3到形成绝缘层的1018/cm3o相对于扩散工艺,离子注入的主要好处在于能更准确地控制杂质掺杂、可重复性和较低的工艺温度。高能的离子由于与衬底中电子和原子核的碰撞而失去能量,最后停在晶格内某一深度。平均深度由于调整加速能量來控制。杂质剂量可由注入时监控离子电流來控制。主要副作用是离子碰撞引起的半导体晶格断裂或损伤。因此,后续的退化处理用來去除这些损伤。离子源■|40kV匕终端地90w分析器磁体mm加速管焦面真空系统中性束捕捉和束阀扫描板离子源■|40kV匕终端地90w分析器磁体mm加速管焦面真空系统中性束捕捉和束阀扫描板X轴 装在晶片工扫描板艺腔中的晶片束捕捉和阀板瞬蠶图7・2中尊能毘离子注入机原理图1离子分布(a)离子射程虑及投影射程心的示意图-个离子在停止前所经过的总距离,称为射程1离子分布(a)离子射程虑及投影射程心的示意图-个离子在停止前所经过的总距离,称为射程R。此距离在入射轴方向上的投/心)=/心)=影称为投影射程Rp°投影射程的统计涨落称为投影偏差op。沿着入射轴的垂直的方向上亦有一统计涨落,称为横向偏差。丄。z下图显示了离子分布,沿着入射轴所注入的杂质分布可以用一个高斯分布函数来近似:zS为单位面积的离子注入剂量.此式等同于恒定掺杂总量扩散关系式。沿X轴移动了一个Rp。回忆公式:对于扩散,最大浓度为X=O;对于离子注入,位于Rp处。在(X-Rp)=±op处,离子浓度比其峰值降低了40%。在±2op处则将为10%。在±3®处为1%。在±4®处将为0.001%。沿着垂直于入射轴的方向上,其分布亦为高斯分布,可用:v2exp(-T^)2无表示。因为这种形式的分布也会参数某些横向注入。离子中止使荷能离子进入半导体衬底后静止有两种机制。—是离子能量传给衬底原子核,是入射离子偏转,也使原子核从格点移出。设E是离子位于其运动路径上某点x处的能量,定义核原子中止能力:S”(D=(妝dx二是入射离子与衬底原子的电子云相互作用,通过库仑作用,离子与电子碰撞失去能量,电子则被激发至高能级或脱离原子。定义电子中止能力:离子能量随距离的平均损耗可由上述两种阻止机制的叠加而得:如果一个离子在停下来之前,所经过的总距离为&则UEE0为初始离子能量,R为射程。

核阻止过程可以看成是一个入射离子硬球与衬底核硬球之间的弹性碰撞Ml转移给M2的能量为:转移给M2的能量为:4A/rW:(砌+曆产十二如…' Eq图7・4—硕球之问的弹性礒損电子中止能力与入射离子的速度成正比*心5

其中系数ke是原子质量和原子序数的弱相关函数。硅的ke值107(eV)l/2/cmo碑化镣的ke值为3x107(eV)1/2/cm离子中止两种机制:一是离子能量传给衬底原子核,是入射离子偏转.也使原子核从格点移出。二是入射离子与衬底原子的电子云相互作用,通过库仑作用,离子与电子碰撞失去能量,电子则被激发至高能级或脱离原子。©帝能之朵质离子硅品体晶格X対线®®®/•原子式碰撞'Q®®被置换的硅原子图7・5©帝能之朵质离子硅品体晶格X対线®®®/•原子式碰撞'Q®®被置换的硅原子图7・5確对碑、磚、硼离子的核中止能力S.(E)•电子中止能力S(E),曲线的交点对应这两种中止施力相等时的能试。硅中电子中止能力如虚线所示,交叉能量点是Sn(E)=Se(E)o—旦Sn(E)和呈式来求得投影射程与投影Se(E)已知,可计算处占呈式来求得投影射程与投影偏差:

(a)B,P和AaAft中'的投・(b)H(a)B,P和AaAft中'的投・(b)H・ZcfCTc&W化t?中'的投形射投妙<8洋和横向恢筮 &投形俣澄和横向伎丸0.01a图74投影射程、投彫個差和横向饴差比较离子注入的沟道效应前述高斯分布的投影射程及投影的标准偏差能很好地说明非晶硅或小晶粒多晶硅衬底的注入离子分布。只要离子束方向偏离低指数晶向<111>,硅和碑化稼中的分布状态就如在非晶半导体中一样。在此情况下,靠近峰值处的实际杂质分布,可用“高斯分布函数”来表示,即使延伸到低于峰值—至两个数量级处也一样.这表示在下图中。然而即使只偏离〈111>晶向7度,仍会有一个随距离而成指数级exp(-x/X)变化的尾区,其中入的典型的数量级为0.lum。衬底定位时有意偏离晶向情况下的杂质分布。离子束从〈111>轴偏离7度入0.2 0.4 0.6 0.8深/tt(Mm)I知7-7杷定位时有応偏海品向情况下的杂质分布,图中离子束入射方向1MK<11D轴7°2指数型尾区与离子注入沟道效应有关,当入射离子对准一个主要的晶向并被导向在各排列晶体原子之间时,沟道效应就会发生。图为沿〈110>方向观测金刚石晶格的示意图。离子沿〈110>方向入射,因为它与靶原子较远,使它在和核碰撞时不会损伤大量能量。对沟道离子来说•唯一的能量损伤机制是电子阻止,因此沟道离子的射程可以比在非晶硅靶中大得多。离子进入的角度及通道<100><110><111>沟道效应降低的技巧1、 覆盖一层非晶体的表面层、将硅芯片转向或在硅芯片表面制造一个损伤的表层。常用的覆盖层非晶体材料只是一层薄的氧化层[图(a)],此层可使离子束的方向随机化,使离子以不同角度进入硅芯片而不直接进入硅晶体沟道。2、 将硅芯片偏离主平面5-10度.也能有防止离子进入沟道的效果[图(b)]。此方法大部分的注入机器将硅芯片倾斜7度并从平边扭转22度以防止沟道效应。3、 先注入大量硅或错原子以破坏硅芯片表面,可在硅芯片表面产生一个随机层[图(0)],这种方法需使用昂贵的离子注入机。离了•注入离(注入离r•注入1M11111HMOOOOOOOOO000000000OOOOOOOOOOOOOOOOOO範化层OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO损伤的品格OOOOOOOOOOOOOOOOOOOOOOOOOOO晶格晶格OOOOOOOOOOOOOOOOOO晶格(a)经过非晶体氧化层的注入(b)不对准晶轴的入射(c)在单晶址上的预先损伤5注入损伤与退火离子注入中,与原子核碰撞后转移足够的能量给晶格,使基质原子离开晶格位置而造成注入损伤(晶格无序)。这些离位的在也许获得入射能量的大部分,接着如骨牌效应导致邻近原子的相继移位而形成一个沿着离子路径的树枝状的无序区。当单位体积内移位的原子数接近半导体的原子密度时,单晶材料便成为非晶材料。轻离子的树枝状的无序区不同于重离子。轻离子(11B+)大多数的能量损伤起因于电子碰撞.这并不导致晶格损伤。离子的能量会减低至交叉点能量,而在那里核阻止会成为主导。因此,晶格无序发生在离子最终的位置附近。如下图(a)所示。重离子的能量损失主要是原子核碰撞,因此预期有大量的损伤。如下图(b)所示。(b)所示。要估计将单晶转变为非晶材料所需的能量.可以利用—个判据’即认为注入量应该与融化材料所需的能量密度(1021keV/cm3)在数量级上相同。对于lOOkeV的碑离子来说,形成非晶硅所需的剂量为S 6x10个园子/cnr6退火由于离子注入所造成的损伤区及畸形团,使迁移率和寿命等半导体参数受到影响。此外,大部分的离子在被注入时并不位于置换位置。为激活被注入的离子并恢复迁移率与其它材料参数,必须在适当的时间与温度下将半导体退火。传统退火炉使用类似热氧化的整批式开放炉管系统。需要长时间和高温来消除注入损伤。但会造成大量杂质扩散而无法符合浅结及窄杂质分布的需求。快速热退火(RTA)是一种采用各种能源、退火时间范围很宽(100s到纳秒)的退火工艺。RTA可以在最小的杂质再分布情况下完全激活杂质。■退火:将注入离子的硅片在一定温度和真空或氮、氮等高纯气体的保护下,经过适当时间的热处理,■部分或全部消除硅片中的损伤,少数载流子的寿命及迁移率也会不同程度的得到恢复,■电激活掺入的杂质■分为普通热退火、硼的退火特性、磷的退火特性、扩散效应、快速退火■普通热退火:退火时间通常为15—30min,使用通常的扩散炉,在真空或氮、氮等气体的保护下对衬底作退火处理。缺点:清除缺陷不完全’注入杂质激活不高,退火温度高、时间长,导致杂质再分布。7硼与磷的传统退火退火的特性与掺杂种类及所含剂量有关500一"—j"」一~…"山_・丄““山_—一310,2 IO'3 1OU 1OI$ I01*剂运(离子数5;)隔的退火特槎因中给出的是硼离子以150keV&t)能量和三个不同剂星注入硅中的退火特性。隔的退火特槎因中给出的是硼离子以150keV&t)能量和三个不同剂星注入硅中的退火特性。如图所示.可以把退火温度分为三个区域。1.0莎1鈣cm2.5xl014O

电澈活比网P-Qbz.mxmux硼的退火特性1区单调上升:点缺陷、陷井缺陷消除、自由载流子增加2区出现反退火特性:代位硼减少,淀积在位错上3区单调上升剂量越大,所需退火温度越高。7//、2则尸/•渦温阶氐;-U'、、一, :150keV^-Ts=2dC.ta=30minJIJ0C009008O7000600CJO4001OC)T磷的退火特性杂质浓度达10:5以上时出现无定形硅退火温度达到600C。〜800C°下屈是不同碳剂呈ts况下目由总箭子塑与剂量之叱相刘如果非吕忑不呈从靶表面亓赌5£忡予宪內某一位侵,而是正靶內杲一区域形戍氏h在退火时・刃延円生长牝在两个界面耐发主,两个外延面扫遇时>可能在交畀面处发空原子失配热退火问题:简单、价廉激活率不高产生二次缺陷,杆状位错。位错环、层错、位错网加剧扩散效应:扩散效应扩散效应:热退火的温度与热扩散时的温度相比,要低得多。但是>对于注入区的杂质,即使在比较低的温度下>杂质扩散也是非常显著的。这是因为注入离子所造成的晶格损伤,使硅内的空位密度比热平衡时晶体中的空位密度要大得多。另外'由于离子注入也使晶体内存在大量的间隙原子和多种缺陷,这些郡会使扩散丟数増大,扩散效应増强。因此,有时也称热退火过程中的扩散为増强扩散。如果退火晶片满足半无卩艮大条件'则注入杂质经退火后在靶内的分布仍然是高斯函数,但标准偏差要有所修正。分布函数的表达式为:8快速热退火—个具有瞬间光加热的快速热退火系统表为传统炉管与RTA技术的比较。为获得较短的工艺时间,需在温度和工艺的不均匀性、温度测量与控制、硅芯片的应力与产率间作取舍。块速退火快速退火可以分为:渕光退火.电子束退火、离子束退火■非相干光退火等等。—11 2蔑退火时间在10 ^10S之间,亦称瞬态退火。优曲先焰化J再结晶,时间快,杂质束不及扩散。RHT设备采用洁华犬学微电子所发明的红外光快速热处理技术。该技术采用高频感应加热石英腔内的高純度石旻作为红外辐射热源'使晶片在石零腔内迅速升温,通常约三秒可达1000°C>而在加热区外迅速降温口i亥设备具有升温快,加热均匀,热处理后晶片不变形等忧点「芯片《Ewo、>》休冲■光,电子K.*T*(n扫損皿子桌(D快aus火(io、》注入(芯片《Ewo、>》休冲■光,电子K.*T*(n扫損皿子桌(D快aus火(io、》注入(10)tFftra/cdo®)气体入11加2”小O-C«}Y“ 1O10*4OeiM*WM(3)IR温度计各年肉时逹火方斷B6功华&茨勺逞火X蹴齡冲肖集并阿)的关系快速热退火表77技术比较决定因索常规退火炉技术快速热退火技术加工形式分批式单片式炉况热熨加热連率低S5循环周期长短温度监测炉晶片热砂计母低尘埃问题存在晟小化均匀性和S[复性高低生产效率高低9注入相关工艺-多次注入及掩蔽在许多应用中’除了简单的高斯分布外其它的杂质分布也是需要的。例如硅内预先注入惰性离子,使表面变成非晶。此方法使杂质分布能准确地控制,且近乎百分百的杂质在低温下激活。在此情况下,深层的非晶体层是必须,为了得到这种区域,必须要做一系列不同能量与剂量的注入(多次注入)。多次注入如下图所示,用于形成一平坦的杂质分布。10rE)壑童糕举02 0.4 0.6矩离(gm)10rE)壑童糕举02 0.4 0.6矩离(gm)0.81.0图7-13用务次注人形成的聲加杂质分布〉为了要在半导体衬底中预先选择的区域里形成p-n结,注入时需要一层合适的掩蔽层。此层要阻止一定比例的入射离子其最小厚度可从离子的射程参数来求得。在某一深度d之后的注入量对回忆式积分可得:穿越深度d的剂量的百分比可由穿透系数T求得:—旦得到了T,对任一恒定的Rp和OP来说,都可以求得掩蔽层厚度d,对Si02、Si3N4与抗蚀剂来说,要阻挡99.99%的入射离子(T=10-4)所需的d值如下图所示。图中内插图显示了在掩蔽材料内的注入物的分布。因因7幺盞菇達權甘99・—rSLN二——S沬缚淒萍宝( -S?§r5当器件缩小到亚微米尺寸时,将杂质分布垂直方向也缩写是很重要的。现代器件结构如轻掺杂漏极(LDD),需要在纵向和横向上精确控制杂质分布。垂直于表面的离子速度决定注入分布的投影射程。如果硅芯片相对于离子束倾斜了一个很大的角度.则等效离子能量将大为减少。在倾斜角度离子注入时,需考虑硅芯片上掩蔽图案的阴影效应。较小的倾斜角度导致一个小阴影区。如高为0.5um的掩蔽层,离子束的入射角为7度,将导致一个61nm的阴影区。可能是器件产生一个预想不到的串联电阻。60keV碑入射到硅中,相对浓度分布为离子束倾斜角度的函数,内插图所示是倾斜角度离子注入的阴影区图7-1560keV的砰詔子注入稚中时与倾斜角度的函数关系,其中揺图表示傾席离子注入形成的遮蔽区域11高能量与大电流注入注入机能量可高达1.5-5MeV,且已用作多种新型用途。主要利用其能将杂质掺入半导体内深达好几个微米的能力而不需要借助高温下长时间的扩散。也可用于制作低电阻埋层。例如,CMOS器件中距离表面深达1.5到3um的埋层。大电流注入机(10-20mA)工作在25-30keV范围下,通常用于扩散技术中的预置处理。因为其总量能够精确控制。在预置后,掺杂剂可以用高温扩散步骤再分布,同时顺便将表面区的注入损伤修补。另一用途就是MOS器件的阈值电压调整,精确控制的杂质量经栅极氧化层注入沟道区。目前,已有能量范围介于150-200keV的大电流离子注入。主要用途是制作高品质硅层,通过向硅层中注入氧来生成二氧化硅从而使该硅层与衬底绝缘。这种氧注入隔离(SIMOX)是一种绝缘层

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论