2024届吉林省长春市榆树市九年级数学第一学期期末达标测试试题含解析_第1页
2024届吉林省长春市榆树市九年级数学第一学期期末达标测试试题含解析_第2页
2024届吉林省长春市榆树市九年级数学第一学期期末达标测试试题含解析_第3页
2024届吉林省长春市榆树市九年级数学第一学期期末达标测试试题含解析_第4页
2024届吉林省长春市榆树市九年级数学第一学期期末达标测试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届吉林省长春市榆树市九年级数学第一学期期末达标测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列图形中,是中心对称图形但不是轴对称图形的是().A. B.C. D.2.一元二次方程x2-2x+1=0的根的情况是()A.只有一个实数根 B.有两个相等的实数根C.有两个不相等的实数根 D.没有实数根3.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣54.若抛物线经过点,则的值在().A.0和1之间 B.1和2之间 C.2和3之间 D.3和4之间5.一个学习兴趣小组有2名女生,3名男生,现要从这5名学生中任选出一人担当组长,则女生当组长的概率是()A. B. C. D.6.若与的相似比为1:4,则与的周长比为()A.1:2 B.1:3 C.1:4 D.1:167.下列关于抛物线y=2x2﹣3的说法,正确的是()A.抛物线的开口向下B.抛物线的对称轴是直线x=1C.抛物线与x轴有两个交点D.抛物线y=2x2﹣3向左平移两个单位长度可得抛物线y=2(x﹣2)2﹣38.关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0的一个根为0,则m为()A.0 B.1 C.﹣1 D.1或﹣19.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DM B. C.∠ACD=∠ADC D.OM=MD10.某商场将进货价为45元的某种服装以65元售出,平均每天可售30件,为了尽快减少库存,商场决定采取适当的降价措施,调查发现:每件降价1元,则每天可多售5件,如果每天要盈利800元,每件应降价()A.12元 B.10元 C.11元 D.9元二、填空题(每小题3分,共24分)11.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是_____.12.如图,两弦AB、CD相交于点E,且AB⊥CD,若∠B=60°,则∠A等于_____度.13.如图,在△ABC中,D,E分别是AC,BC边上的中点,则三角形CDE的面积与四边形ABED的面积比等于____________14.在平面直角坐标系中,点P(2,﹣3)关于原点对称点P′的坐标是_____.15.我军侦察员在距敌方120m的地方发现敌方的一座建筑物,但不知其高度又不能靠近建筑物物测量,机灵的侦察员将自己的食指竖直举在右眼前,闭上左眼,并将食指前后移动,使食指恰好将该建筑物遮住,如图所示.若此时眼睛到食指的距离约为40cm,食指的长约为8cm,则敌方建筑物的高度约是_______m.16.如图,一段抛物线记为,它与轴交于两点、,将绕旋转得到,交轴于,将绕旋转得到,交轴于;如此进行下去,直至得到,若点在第8段抛物线上,则等于__________17.已知关于x的一元二次方程x2+kx﹣6=0有一个根为﹣3,则方程的另一个根为_____.18.如图是二次函数的部分图象,由图象可知不等式的解集是_______.三、解答题(共66分)19.(10分)(1)已知a,b,c,d是成比例线段,其中a=2cm,b=3cm,d=6cm,求线段c的长;(2)已知,且a+b﹣5c=15,求c的值.20.(6分)如图,是的弦,于,交于,若,求的半径.21.(6分)如图1,已知抛物线y=﹣x2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),点P是抛物线上一动点,试过点P作x轴的垂线1,再过点A作1的垂线,垂足为Q,连接AP.(1)求抛物线的函数表达式和点C的坐标;(2)若△AQP∽△AOC,求点P的横坐标;(3)如图2,当点P位于抛物线的对称轴的右侧时,若将△APQ沿AP对折,点Q的对应点为点Q′,请直接写出当点Q′落在坐标轴上时点P的坐标.22.(8分)如图,在平面直角坐标系中,点B在x轴上,∠ABO=90°,AB=BO,直线y=﹣3x﹣4与反比例函数y=交于点A,交y轴于C点.(1)求k的值;(2)点D与点O关于AB对称,连接AD、CD,证明△ACD是直角三角形;(3)在(2)的条件下,点E在反比例函数图象上,若S△OCE=S△OCD,求点E的坐标.23.(8分)如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E.(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.24.(8分)(1)解方程:.(2)已知:关于x的方程①求证:方程有两个不相等的实数根;②若方程的一个根是,求另一个根及k值.25.(10分)抛物线直线一个交点另一个交点在轴上,点是线段上异于的一个动点,过点作轴的垂线,交抛物线于点.(1)求抛物线的解析式;(2)是否存在这样的点,使线段长度最大?若存在,求出最大值及此时点的坐标,若不存在,说明理由;(3)求当为直角三角形时点P的坐标.26.(10分)如图,已知点D在△ABC的外部,AD∥BC,点E在边AB上,AB•AD=BC•AE.(1)求证:∠BAC=∠AED;(2)在边AC取一点F,如果∠AFE=∠D,求证:.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据轴对称图形与中心对称图形的定义进行判断.【详解】A、既是中心对称图形,又是轴对称图形,不符合题意;B、是中心对称图形但不是轴对称图形,符合题意;C、不是中心对称图形,但是轴对称图形,不符合题意;D、不是中心对称图形,但是轴对称图形,不符合题意;故选B.【点睛】本题考查中心对称图形与轴对称图形的识别,熟练掌握中心对称图形与轴对称图形的定义是解题的关键.2、B【解析】△=b2-4ac=(-2)2-4×1×1=0,∴原方程有两个相等的实数根.故选B.【点睛】,本题考查根的判别式,一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3、B【分析】根据关于x的方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.【详解】∵关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,

∴-2+m=−,

解得,m=-1,

故选B.4、D【分析】将点A代入抛物线表达式中,得到,根据进行判断.【详解】∵抛物线经过点,∴,∵,∴的值在3和4之间,故选D.【点睛】本题考查抛物线的表达式,无理数的估计,熟知是解题的关键.5、C【分析】直接利用概率公式求解即可求得答案.【详解】∵一个学习兴趣小组有2名女生,3名男生,∴女生当组长的概率是:.故选:C.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.6、C【分析】根据相似三角形的性质解答即可.【详解】解:∵与的相似比为1:4,∴与的周长比为:1:4.故选:C.【点睛】本题考查了相似三角形的性质,属于应知应会题型,熟练掌握相似三角形的性质是解题关键.7、C【解析】根据二次函数的性质及二次函数图象“左加右减,上加下减”的平移规律逐一判断即可得答案.【详解】∵2>0,∴抛物线y=2x2﹣3的开口向上,故A选项错误,∵y=2x2﹣3是二次函数的顶点式,∴对称轴是y轴,故B选项错误,∵-3<0,抛物线开口向上,∴抛物线与x轴有两个交点,故C选项正确,抛物线y=2x2﹣3向左平移两个单位长度可得抛物线y=2(x+2)2﹣3,故D选项错误,故选:C.【点睛】此题考查二次函数的性质及二次函数图象的平移,熟练掌握二次函数的性质及“左加右减,上加下减”的平移规律是解题关键.8、C【分析】将0代入一元二次方程中建立一个关于m的一元二次方程,解方程即可,再根据一元二次方程的定义即可得出答案.【详解】解:依题意,得m2﹣1=0,且m﹣1≠0,解得m=﹣1.故选:C.【点睛】本题主要考查一元二次方程的根及一元二次方程的定义,准确的运算是解题的关键.9、D【解析】∵AB是⊙O的直径,弦CD⊥AB,垂足为M,∴M为CD的中点,即CM=DM,选项A成立;∵B为的中点,即,选项B成立;在△ACM和△ADM中,∵AM=AM,∠AMC=∠AMD=90°,CM=DM,∴△ACM≌△ADM(SAS),∴∠ACD=∠ADC,选项C成立.而OM与MD不一定相等,选项D不成立.故选D.10、B【分析】设应降价x元,根据题意列写方程并求解可得答案.【详解】设应降价x元则根据题意,等量方程为:(65-x-45)(30+5x)=800解得:x=4或x=10∵要尽快较少库存,∴x=4舍去故选:B.【点睛】本题考查一元二次方程利润问题的应用,需要注意最后有2个解,需要按照题干要求舍去其中一个解.二、填空题(每小题3分,共24分)11、(3,﹣2)【解析】根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,即可得出答案.【详解】解:平面直角坐标系内两点关于原点对称横纵坐标互为相反数,∴点(﹣3,2)关于原点对称的点的坐标是(3,﹣2),故答案为(3,﹣2).【点睛】本题主要考查了平面直角坐标系内点的坐标位置关系,难度较小.12、30【解析】首先根据圆周角定理,得∠A=∠BDC,再根据三角形的内角和定理即可求得∠BDC的度数,从而得出结论.【详解】∵AB⊥CD,∴∠DEB=90°,∵∠B=60°∴∠BDC=90°-∠B=90°-60°=30°,∴∠A=∠BDC=30°,故答案为30°.【点睛】综合运用了圆周角定理以及三角形的内角和定理.13、1:3【分析】根据中位线的定义可得:DE为△ABC的中位线,再根据中位线的性质可得DE∥AB,且,从而证出△CDE∽△CAB,根据相似三角形的性质即可求出,从而求出三角形CDE的面积与四边形ABED的面积比.【详解】解:∵D,E分别是AC,BC边上的中点,∴DE为△ABC的中位线∴DE∥AB,且∴△CDE∽△CAB∴∴故答案为:1:3.【点睛】此题考查的是中位线的性质和相似三角形的判定及性质,掌握中位线的性质、用平行证相似和相似三角形的面积比等于相似比的平方是解决此题的关键.14、(﹣2,3).【解析】根据坐标轴的对称性即可写出.【详解】解:根据中心对称的性质,得点P(2,﹣3)关于原点的对称点P′的坐标是(﹣2,3).故答案为:(﹣2,3).【点睛】此题主要考查直角坐标系内的坐标变换,解题的关键是熟知直角坐标系的特点.15、1【分析】如图(见解析),过点A作,交BC于点F,利用平行线分线段成比例定理推论求解即可.【详解】如图,过点A作,交BC于点F由题意得则(平行线分线段成比例定理推论)即解得故答案为:1.【点睛】本题考查了平行线分线段成比例定理推论,读懂题意,将所求问题转化为利用平行线分线段成比例定理推论的问题是解题关键.16、【分析】求出抛物线与x轴的交点坐标,观察图形可知第奇数号抛物线都在x轴上方、第偶数号抛物线都在x轴下方,再根据向右平移横坐标相加表示出抛物线的解析式,然后把点P的横坐标代入计算即可.【详解】抛物线与x轴的交点为(0,0)、(2,0),将绕旋转180°得到,则的解析式为,同理可得的解析式为,的解析式为的解析式为的解析式为的解析式为的解析式为∵点在抛物线上,∴故答案为【点睛】本题考查的是二次函数的图像性质与平移,能够根据题意确定出的解析式是解题的关键.17、1【分析】设方程的另一个根为a,根据根与系数的关系得出a+(﹣3)=﹣k,﹣3a=﹣6,求出即可.【详解】设方程的另一个根为a,则根据根与系数的关系得:a+(﹣3)=﹣k,﹣3a=﹣6,解得:a=1,故答案为1.【点睛】本题考查了根与系数的关系和一元二次方程的解,能熟记根与系数的关系的内容是解此题的关键.18、【解析】求方程的解即是求函数图象与x轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x轴的一个交点为5,所以,另一交点为2-3=-1.∴x1=-1,x2=5.∴不等式的解集是.故答案为【点睛】要了解二次函数性质与图像,由于图像的开口向下,所以,有两个交点,知一易求另一个,本题属于基础题.三、解答题(共66分)19、(1)1;(2)-1【分析】(1)根据比例线段的定义得到a:b=c:d,然后把a=2cm,b=3cm,d=6cm代入进行计算即可;

(2)设=k,得出a=2k,b=3k,c=1k,代入a+b-5c=15,求出k的值,从而得出c的值.【详解】(1)∵a,b,c,d是成比例线段

∴,

即,

∴c=1;

(2)设=k,则a=2k,b=3k,c=1k,

∵a+b-5c=15

∴2k+3k-20k=15

解得:k=-1

∴c=-1.【点睛】此题考查比例线段,解题关键是理解比例线段的概念,列出比例式,用到的知识点是比例的基本性质.20、5.【分析】连接OB,由垂径定理得BE=CE=4,在中,根据勾股定理列方程求解.【详解】解:连接设的半径为,则在中,由勾股定理得,即解得的半径为【点睛】本题考查了圆的垂径定理,利用勾股定理列方程求解是解答此题的关键.21、(1)y=﹣x2+3x+4;(﹣1,0);(2)P的横坐标为或.(3)点P的坐标为(4,0)或(5,﹣6)或(2,6).【分析】(1)利用待定系数法求抛物线解析式,然后利用抛物线解析式得到一元二次方程,通过解一元二次方程得到C点坐标;(2)利用△AQP∽△AOC得到AQ=4PQ,设P(m,﹣m2+3m+4),所以m=4|4﹣(﹣m2+3m+4|,然后解方程4(m2﹣3m)=m和方程4(m2﹣3m)=﹣m得P点坐标;(3)设P(m,﹣m2+3m+4)(m>),当点Q′落在x轴上,延长QP交x轴于H,如图2,则PQ=m2﹣3m,证明Rt△AOQ′∽Rt△Q′HP,利用相似比得到Q′B=4m﹣12,则OQ′=12﹣3m,在Rt△AOQ′中,利用勾股定理得到方程42+(12﹣3m)2=m2,然后解方程求出m得到此时P点坐标;当点Q′落在y轴上,易得点A、Q′、P、Q所组成的四边形为正方形,利用PQ=PQ′得到|m2﹣3m|=m,然后解方程m2﹣3m=m和方程m2﹣3m=﹣m得此时P点坐标.【详解】解:(1)把A(0,4),B(4,0)分别代入y=﹣x2+bx+c得,解得,∴抛物线解析式为y=﹣x2+3x+4,当y=0时,﹣x2+3x+4=0,解得x1=﹣1,x2=4,∴C(﹣1,0);故答案为y=﹣x2+3x+4;(﹣1,0);(2)∵△AQP∽△AOC,∴,∴,即AQ=4PQ,设P(m,﹣m2+3m+4),∴m=4|4﹣(﹣m2+3m+4|,即4|m2﹣3m|=m,解方程4(m2﹣3m)=m得m1=0(舍去),m2=,此时P点横坐标为;解方程4(m2﹣3m)=﹣m得m1=0(舍去),m2=,此时P点坐标为;综上所述,点P的坐标为(,)或(,);(3)设,当点Q′落在x轴上,延长QP交x轴于H,如图2,则PQ=4﹣(﹣m2+3m+4)=m2﹣3m,∵△APQ沿AP对折,点Q的对应点为点Q',∴∠AQ′P=∠AQP=90°,AQ′=AQ=m,PQ′=PQ=m2﹣3m,∵∠AQ′O=∠Q′PH,∴Rt△AOQ′∽Rt△Q′HP,∴,即,解得Q′H=4m﹣12,∴OQ′=m﹣(4m﹣12)=12﹣3m,在Rt△AOQ′中,42+(12﹣3m)2=m2,整理得m2﹣9m+20=0,解得m1=4,m2=5,此时P点坐标为(4,0)或(5,﹣6);当点Q′落在y轴上,则点A、Q′、P、Q所组成的四边形为正方形,∴PQ=AQ′,即|m2﹣3m|=m,解方程m2﹣3m=m得m1=0(舍去),m2=4,此时P点坐标为(4,0);解方程m2﹣3m=﹣m得m1=0(舍去),m2=2,此时P点坐标为(2,6),综上所述,点P的坐标为(4,0)或(5,﹣6)或(2,6)【点睛】本题考查了待定系数法,相似三角形的性质,解一元二次方程,三角形折叠,题目综合性较强,解决本题的关键是:①熟练掌握待定系数法求函数解析式;②能够熟练掌握相似三角形的判定和性质;③能够熟练掌握一元二次方程的解法;④理解折叠的性质.22、(1)-4;(2)见解析;(3)点E的坐标为(﹣4,1).【分析】(1)根据一次函数图象上点的坐标特征求出点A的坐标,利用待定系数法求出k;

(2)先求出点D的坐标,求出∠ADB=45°,∠ODC=45°,从而得解;

(3)设出点E的坐标,根据三角形的面积公式解答.【详解】(1)设点B的坐标为(a,0),∵∠ABO=90°,AB=BO,∴点A的坐标为(a,﹣a),∵点A在直线y=﹣3x﹣4上,∴﹣a=﹣3a﹣4,解得,a=﹣2,即点A的坐标为(﹣2,2),∵点A在反比例函数y=上,∴k=﹣4;(2)∵点D与点O关于AB对称,∴点D的坐标为(﹣4,0)∴OD=4,∴DB=BA=2,则∠ADB=45°,∵直线y=﹣3x﹣4交y轴于C点,∴点C的坐标为(0,﹣4),∴OD=OC,∴∠ODC=45°,∴∠ADC=∠ADB+∠ODC=90°,即△ACD是直角三角形;(3)设点E的坐标为(m,﹣),∵S△OCE=S△OCD,∴×4×4=×4×(﹣m),解得,m=﹣4,∴﹣=1,∴点E的坐标为(﹣4,1).【点睛】本题考查的是反比例函数与几何的综合题,掌握待定系数法求反比例函数解析式是解题的关键.23、(1)证明见解析(2)2【解析】试题分析:由角平分线得出,得出,由圆周角定理得出证出再由三角形的外角性质得出即可得出由得:,得出由圆周角定理得出是直径,由勾股定理求出即可得出外接圆的半径.试题解析:(1)证明:平分又平分连接,是直径.平分∴半径为24、(1)x1=1,x1=1;(1)①见解析;②另一个根为1,【分析】(1)把方程x1﹣3x+1=0进行因式分解,变为(x﹣1)(x﹣1)=0,再根据“两式乘积为0,则至少一式的值为0”求出解;

(1)①由△=b1﹣4ac=k1+8>0,即可判定方程有两个不相等的实数根;

②首先将x=﹣1代入原方程,求得k的值,然后解此方程即可求得另一个根.【详解】(1)解:x1﹣3x+1=0,(x﹣1)(x﹣1)=0,x1=1,x1=1;(1)①证明:∵a=1,b=k,c=﹣1,∴△=b1﹣4ac=k1﹣4×1×(﹣1)=k1+8>0,∴方程有两个不相等的实数根;②解:当x=﹣1时,(﹣1)1﹣k﹣1=0,解得:k=﹣1,则原方程为:x1﹣x﹣1=0,即(x﹣1)(x+1)=0,解得:x1=1,x1=﹣1,所以另一个根为1.【点睛】本题考查了一元二次方程ax1+bx+c=0(a,b,c是常数且a≠0)的根的判别式及根与系数的关系;根判别式△=b1−4ac:(1)当△>0时,一元二次方程有两个不相等的实数根;(1)当△=0时,一元二次方程有两个相等的实数根;(3)当△<0时,一元二次方程没有实数根;若x1,x1为一元二次方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论