版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省淮安市数学九上期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.m是方程的一个根,且,则的值为()A. B.1 C. D.2.如图所示的几何体为圆台,其俯视图正确的是A. B. C. D.3.一组数据1,2,3,3,4,1.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数 B.众数 C.中位数 D.方差4.将抛物线y=x2+4x+3向左平移1个单位,再向下平移3个单位的所得抛物线的表达式是()A.y=(x+1)2-4 B.y=-(x+1)2-4 C.y=(x+3)2-4 D.y=-(x+3)2-45.某商场举行投资促销活动,对于“抽到一等奖的概率为”,下列说法正确的是()A.抽一次不可能抽到一等奖B.抽次也可能没有抽到一等奖C.抽次奖必有一次抽到一等奖D.抽了次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖6.如图,正六边形ABCDEF的半径OA=OD=2,则点B关于原点O的对称点坐标为()A.(1,﹣) B.(﹣1,) C.(﹣,1) D.(,﹣1)7.如图,BC是的直径,A,D是上的两点,连接AB,AD,BD,若,则的度数是()A. B. C. D.8.对于不为零的两个实数a,b,如果规定a★b,那么函数的图象大致是()A. B. C. D.9.函数的顶点坐标是()A. B. C. D.10.在下列图形中,是中心对称图形而不是轴对称图形的是()A.圆 B.等边三角形 C.梯形 D.平行四边形二、填空题(每小题3分,共24分)11.如图,建筑物BC上有一旗杆AB,从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为__________m.(结果取整数.参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)12.如图,,请补充—个条件:___________,使(只写一个答案即可).13.函数y=的自变量x的取值范围是_______________.14.如图,等边△ABO的边长为2,点B在x轴上,反比例函数图象经过点A,将△ABO绕点O顺时针旋转a(0°<a<360°),使点A仍落在双曲线上,则a=_____.15.圆的半径为1,AB是圆中的一条弦,AB=,则弦AB所对的圆周角的度数为____.16.如果不等式组的解集是x<a﹣4,则a的取值范围是_______.17.在如图所示的电路图中,当随机闭合开关,,中的两个时,能够让灯泡发光的概率为________.18.如图,在中,,,若为斜边上的中线,则的度数为________.三、解答题(共66分)19.(10分)如图,为的直径,直线于点.点在上,分别连接,,且的延长线交于点,为的切线交于点.(1)求证:;(2)连接,若,,求线段的长.20.(6分)如图,△ABC的中线AD、BE、CF相交于点G,H、I分别是BG、CG的中点.(1)求证:四边形EFHI是平行四边形;(2)①当AD与BC满足条件时,四边形EFHI是矩形;②当AG与BC满足条件时,四边形EFHI是菱形.21.(6分)如图,有四张背面相同的纸牌A、B、C、D,其正面分别画有四个不同的图形,小明将这四张纸牌背面朝上洗匀后随机摸出一张,放回后洗匀再随机摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A、B、C、D表示);(2)求两次摸出的牌面图形既是中心对称图形又是轴对称图形的概率.22.(8分)已知抛物线经过A(0,2)、B(4,0)、C(5,-3)三点,当时,其图象如图所示.(1)求该抛物线的解析式,并写出该抛物线的顶点坐标;(2)求该抛物线与轴的另一个交点的坐标.23.(8分)解方程:(1)3x(x-2)=4(x-2);(2)2x2-4x+1=024.(8分)(1)计算:.(2)如图,正方形纸板在投影面上的正投影为,其中边与投影面平行,与投影面不平行.若正方形的边长为厘米,,求其投影的面积.25.(10分)已知反比例函数和一次函数.(1)当两个函数图象的交点的横坐标是-2和3时,求一次函数的表达式;(2)当时,两个函数的图象只有一个交点,求的值.26.(10分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=5,AB=8,求的值.
参考答案一、选择题(每小题3分,共30分)1、A【解析】将m代入关于x的一元二次方程x2+nx+m=0,通过解该方程即可求得m+n的值.【详解】解:∵m是关于x的一元二次方程x2+nx+m=0的根,
∴m2+nm+m=0,
∴m(m+n+1)=0;
又∵m≠0,
∴m+n+1=0,
解得m+n=-1;
故选:A.【点睛】本题考查了一元二次方程的解的定义.一元二次方程ax2+bx+c=0(a≠0)的解一定满足该一元二次方程的关系式.2、C【解析】试题分析:俯视图是从物体上面看,所得到的图形.从几何体的上面看所得到的图形是两个同心圆.故选C.考点:简单几何体的三视图3、D【解析】A.∵原平均数是:(1+2+3+3+4+1)÷6=3;添加一个数据3后的平均数是:(1+2+3+3+4+1+3)÷7=3;∴平均数不发生变化.B.∵原众数是:3;添加一个数据3后的众数是:3;∴众数不发生变化;C.∵原中位数是:3;添加一个数据3后的中位数是:3;∴中位数不发生变化;D.∵原方差是:;添加一个数据3后的方差是:;∴方差发生了变化.故选D.点睛:本题主要考查的是众数、中位数、方差、平均数的,熟练掌握相关概念和公式是解题的关键.4、C【分析】先确定抛物线𝑦=𝑥2+4𝑥+3的顶点坐标为(-2,-1),再根据点平移的规律得到点(-2,-1)平移后所得对应点的坐标为(-3,-4),然后根据顶点式写出平移后的抛物线解析式.【详解】解:∵y=x2+4x+3=x2+4x+4-4+3=(x+2)2-1∵将抛物线y=x2+4x+3向左平移1个单位,再向下平移3个单位∴平移后的函数解析式为:y=(x+2+1)2-1-3,即y=(x+3)2-4.故选:C【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.5、B【解析】根据大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,可得答案.【详解】A.“抽到一等奖的概率为”,抽一次也可能抽到一等奖,故错误;B.“抽到一等奖的概率为”,抽10次也可能抽不到一等奖,故正确;C.“抽到一等奖的概率为”,抽10次也可能抽不到一等奖,故错误;D.“抽到一等奖的概率为”,抽第10次的结果跟前面的结果没有关系,再抽一次也不一定抽到一等奖,故错误;故选B.【点睛】关键是理解概率是反映事件的可能性大小的量.概率小的有可能发生,概率大的有可能不发生.概率等于所求情况数与总情况数之比.6、D【分析】根据正六边形的性质,解直角三角形即可得到结论.【详解】解:连接OB,∵正六边形ABCDEF的半径OA=OD=2,∴OB=OA=AB=6,∠ABO=∠60°,∴∠OBH=60°,∴BH=OB=1,OH=OB=,∴B(﹣,1),∴点B关于原点O的对称点坐标为(,﹣1).故选:D.【点睛】本题考查了正六边形的性质和解直角三角形的相关知识,解决本题的关键是熟练掌握正六边形的性质,能够得到相应角的度数.7、A【分析】连接AC,如图,根据圆周角定理得到,,然后利用互余计算的度数.【详解】连接AC,如图,∵BC是的直径,∴,∵,∴.故答案为.故选A.【点睛】本题考查圆周角定理和推论,解题的关键是掌握圆周角定理和推论.8、C【分析】先根据所给新定义运算求出分段函数解析式,再根据函数解析式来判断函数图象即可.【详解】解:∵a★b,∴∴当x>2时,函数图象在第一象限且自变量的值不等于2,当x≤2时,是反比例函数,函数图象在二、四象限.故应选C.【点睛】本题考查了分段函数及其图象,理解所给定义求出分段函数解析式是解题的关键.9、B【分析】根据题目中的函数解析式,可以直接写出该函数的顶点坐标,本题得以解决.【详解】解:∵函数,∴该函数的顶点坐标是,故选:B.【点睛】本题主要考查二次函数的图像,关键是根据二次函数的顶点式直接得到顶点坐标即可.10、D【解析】解:选项A、是中心对称图形,也是轴对称图形,故此选项错误;选项B、不是中心对称图形,是轴对称图形,故此选项错误;选项C、不是中心对称图形,是轴对称图形,故此选项错误;选项D、是中心对称图形,不是轴对称图形,故此选项正确;故选D.二、填空题(每小题3分,共24分)11、1【分析】根据正切的定义分别求出AC、BC,结合图形计算即可.【详解】解:由题意,CD=10,∠BDC=45°,∠ADC=51°,在Rt△BCD中,tan∠BDC=,则BC=CD•tan45°=10,在Rt△ACD中,tan∠ADC=,则AC=CD•tan∠ADC≈10×1.11=11.1,∴AB=AC-BC=1.1≈1(m),故答案为:1.【点睛】本题考查的是解直角三角形的应用——仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.12、∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD•AC=AB•AE(填一个即可).【分析】根据相似三角形的判定方法,已知一组角相等则再添加一组相等的角或夹该角的两个边对应成比例即可推出两三角形相似.【详解】∵∠DAB=∠CAE,∴∠DAE=∠BAC,∴当∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD•AC=AB•AE时两三角形相似.故答案为:∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD•AC=AB•AE(填一个即可).【点睛】本题考查了相似三角形的判定:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似.13、x≥3【分析】分式有意义,分母不为0;二次根式的被开方数是非负数.根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【详解】根据二次根式有意义,分式有意义得:x-3≥0且x+1≠0,解得:x≥3故答案为x≥3【点睛】本题考查函数自变量的取值范围,基础知识扎实是解题关键14、30°或180°或210°【分析】根据等边三角形的性质,双曲线的轴对称性和中心对称性即可求解.【详解】根据反比例函数的轴对称性,A点关于直线y=x对称,∵△OAB是等边三角形,∴∠AOB=60°,∴AO与直线y=x的夹角是15°,∴a=2×15°=30°时点A落在双曲线上,根据反比例函数的中心对称性,∴点A旋转到直线OA上时,点A落在双曲线上,∴此时a=180°,根据反比例函数的轴对称性,继续旋转30°时,点A落在双曲线上,∴此时a=210°;故答案为:30°或180°或210°.考点:(1)、反比例函数图象上点的坐标特征;(2)、等边三角形的性质;(3)、坐标与图形变化-旋转.15、60°或120°【解析】试题解析:如图,作OH⊥AB于H,连接OA、OB,∠C和∠C′为AB所对的圆周角,∵OH⊥AB,∴AH=BH=AB=,在Rt△OAH中,∵cos∠OAH=,∴∠OAH=30°,∴∠AOB=180°-60°=120°,∴∠C=∠AOB=60°,∴∠C′=180°-∠C=120°,即弦AB所对的圆周角为60°或120°.点睛:圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.16、a≥﹣3.【分析】根据口诀“同小取小”可知不等式组的解集,解这个不等式即可.【详解】解这个不等式组为x<a﹣4,则3a+2≥a﹣4,解这个不等式得a≥﹣3故答案a≥﹣3.【点睛】此题考查解一元一次不等式组,掌握运算法则是解题关键17、【分析】分析电路图知:要让灯泡发光,必须闭合,同时,中任意一个关闭时,满足条件,从而求算概率.【详解】分析电路图知:要让灯泡发光,必须闭合,同时,中任意一个关闭时,满足:一共有:,,、,、,三种情况,满足条件的有,、,两种,∴能够让灯泡发光的概率为:故答案为:.【点睛】本题考查概率运算,分析出所有可能的结果,寻找出满足条件的情况是解题关键.18、【分析】先根据直角三角形的性质得出AD=CD,进而根据等边对等角得出,再根据即得.【详解】∵为斜边上的中线∴AD=CD∴∵∴故答案为:.【点睛】本题考查直角三角形的性质及等腰三角形的性质,解题关键是熟知直角三角形斜边上的中线等于斜边的一半.三、解答题(共66分)19、(1)详见解析;(2)【分析】(1)根据切线的性质得,由切线长定理可证,从而,然后根据等角的余角相等得到,从而根据等腰三角形的判定定理得到结论;(2)根据勾股定理计算出AC=8,再证明△ABC∽△ABD,利用相似比得到AD=,然后证明OF为△ABD的中位线,从而根据三角形中位线性质求出OF的长.【详解】(1)证明:∵是的直径,∴(直径所对的圆周角是),∴,∴,∵是的直径,于点,∴是的切线(经过半径外端且与半径垂直的直线是圆的切线),∵是的切线,∴(切线长定理),∴,∵,,∴,∴,∵.(2)由(1)可知,是直角三角形,在中,,,根据勾股定理求得,在和中,∴(两个角对应相等的两个三角形相似),∴,∴,∴,∵,,∴是的中位线,∴(三角形的中位线平行于第三边并且等于第三边的一半).【点睛】本题考查了切线的判定与性质,等腰三角形的判定与性质,勾股定理,相似三角形得判定与性质,余角的性质,以及三角形的中位线等知识.熟练掌握切线的判定与性质、相似三角形得判定与性质是解答本题的关键.20、(1)证明见解析;(2)①AD⊥BC;②2AD=3BC【解析】(1)证出EF、HI分别是△ABC、△BCG的中位线,根据三角形中位线定理可得EF∥BC且EF=BC,HI∥BC且PQ=BC,进而可得EF∥HI且EF=HI.根据一组对边平行且相等的四边形是平行四边形可得结论;(2)①由三角形中位线定理得出FH∥AD,再证出EF⊥FH即可;②与三角形重心定理得出AG=AD,证出AG=BC,由三角形中位线定理和添加条件得出FH=EF,即可得出结论.【详解】(1)证明:∵BE,CF是△ABC的中线,∴EF是△ABC的中位线,∴EF∥BC且EF=BC.∵H、I分别是BG、CG的中点,∴HI是△BCG的中位线,∴HI∥BC且HI=BC,∴EF∥HI且EF=HI,∴四边形EFHI是平行四边形.(2)解:①当AD与BC满足条件AD⊥BC时,四边形EFHI是矩形;理由如下:同(1)得:FH是△ABG的中位线,∴FH∥AG,FH=AG,∴FH∥AD,∵EF∥BC,AD⊥BC,∴EF⊥FH,∴∠EFH=90°,∵四边形EFHI是平行四边形,∴四边形EFHI是矩形;故答案为AD⊥BC;②当AD与BC满足条件BC=AD时,四边形EFHI是菱形;理由如下:∵△ABC的中线AD、BE、CF相交于点G,∴AG=AD,∵BC=AD,∴AG=BC,∵FH=AG,EF=BC,∴FH=EF,又∵四边形EFHI是平行四边形,∴四边形EFHI是菱形;故答案为2AD=3BC.点睛:此题主要考查了三角形中位线定理,以及平行四边形的判定与性质,关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.21、(1)见解析;(2)【分析】(1)用列表法或画出树状图分析数据、列出可能的情况即可.(2)A、B、D既是轴对称图形,也是中心对称图形,C是轴对称图形,不是中心对称图形.列举出所有情况,让两次摸牌的牌面图形既是中心对称图形又是轴对称图形的情况数除以总情况数即为所求的概率.【详解】(1)列表如下:ABCDA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B)(D,C)(D,D)(2)从表中可以得到,两次摸牌所有可能出现的结果共有16种,其中既是中心对称图形又是轴对称图形的有9种.故所求概率是.考点:1.列表法与树状图法;2.轴对称图形;3.中心对称图形.22、(1),顶点坐标为;(2)图象与的另一个交点的坐标为(-1,0).【分析】(1)把A、B、C三点的坐标代入抛物线,解方程组即可;将抛物线化成顶点式即可得出顶点坐标;(2)令y=0,得到方程,解方程即可.【详解】解:(1)依题意,得,解得,抛物线的解析式为,顶点坐标为.(2)令,解得:,图象与的另一个交点的坐标为(-1,0).【点睛】本题考查了抛物线的解析式、与x轴的交点:掌握待定系数法求函数解析式,和把求二次函数(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程是解题的关键.23、(1)x1=2,x2=;(2),.【分析】(1)先移项,再分解因式,即可得出两个一元一次方程,求出方程的解即可;
(2)先求出b2-4ac的值,再代入公式求出即可.【详解】解:(1)3x(x-2)=4(x-2),
3x(x-2)-4(x-2)=0,
(x-2)(3x-4)=0,
x-2=0,3x-4=0,
x1=2,x2=;
(2)2x2-4x+1=0,
b2-4ac=42-4×2×1=8,,
,.【点睛】本题考查了解一元二次方程,能够选择适当的方法解一元二次方程是解此题的关键.24、(1);(2).【分析】(1)代入特殊角的三角函数值,根据实数的混合运算法则计算即可;(2)作BE⊥CC1于点E,利用等腰直角三角形的性质求得的长即可求得B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2020年中考道德与法治热点复习:未成年人保护法修订草案-专项练习题(含答案解析)
- 学校塑胶台阶合同范例
- 房屋搭建改造合同范例
- 山西创新企业策划合同范例
- 工程建筑外架合同范例
- 司机劳动合同范例
- 买卖凶宅合同范例
- 床品采购合同模板
- 2024年潍坊客运从业资格证试题答案
- 2024年湛江道路客运从业资格证模拟考试
- MOOC 跨文化交际通识通论-扬州大学 中国大学慕课答案
- (正式版)SHT 3078-2024 立式圆筒形料仓工程设计规范
- 国开2024年《钢结构(本)》阶段性学习测验1-4答案
- GB/T 2471-2024电阻器和电容器优先数系
- 高三化学二轮复习+《有机合成与推断》之有机方程式书写总汇++
- 工程总承包(EPC)施工组织设计
- 2016年7月自考00324人事管理学试题及答案含解析
- 2024年度-财务管理PPT模板
- 人工智能专业生涯发展展示
- 中国智慧服务行业发展前景及发展策略与投资风险研究报告2024-2029版
- 保险公司员转正的心得体会3篇
评论
0/150
提交评论