版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届黑龙江省哈尔滨市第六十中学数学九上期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,点O是△ABC的内切圆的圆心,若∠A=80°,则∠BOC为()A.100° B.130°C.50° D.65°2.⊙O的半径为5,圆心O到直线l的距离为3,下列位置关系正确的是()A. B.C. D.3.已知关于x的函数y=k(x+1)和y=﹣(k≠0)它们在同一坐标系中的大致图象是()A. B.C. D.4.抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是()A. B. C. D.5.如图△ABC中,BE平分∠ABC,DE∥BC,若DE=2AD,AE=2,那么AC的长为()A.3 B.4 C.5 D.66.如图2,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD为菱形的是()A.BA=BC B.AC、BD互相平分 C.AC=BD D.AB∥CD7.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.某女模特身高165cm,下半身长x(cm)与身高l(cm)的比值是0.1.为尽可能达到好的效果,她应穿的高跟鞋的高度大约为()A.4cm B.6cm C.8cm D.10cm8.如图,把一张圆形纸片和一张含45°角的扇形纸片如图所示的方式分别剪得一个正方形,如果所剪得的两个正方形边长都是1,那么圆形纸片和扇形纸片的面积比是()A.4:5 B.2:5 C.:2 D.:9.如图,四边形的顶点坐标分别为.如果四边形与四边形位似,位似中心是原点,它的面积等于四边形面积的倍,那么点的坐标可以是()A. B.C. D.10.如图,点C是线段AB的黄金分割点(AC>BC),下列结论错误的是()A. B. C. D.11.如图,已知一组平行线a∥b∥c,被直线m、n所截,交点分别为A、B、C和D、E、F,且AB=1.5,BC=2,DE=1.8,则EF=()A.4.4 B.4 C.3.4 D.2.412.如图,OA交⊙O于点B,AD切⊙O于点D,点C在⊙O上.若∠A=40°,则∠C为()A.20° B.25° C.30° D.35°二、填空题(每题4分,共24分)13.反比例函数的图象在第象限.14.已知:,且y≠4,那么=______.15.如图,⊙O经过A,B,C三点,PA,PB分别与⊙O相切于A,B点,∠P=46°,则∠C=_____.16.如图,⊙O的直径AB过弦CD的中点E,若∠C=25°,则∠D=________.17.如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则AK=.18.若是方程的一个根.则的值是________.三、解答题(共78分)19.(8分)如图,在△ABF中,以AB为直径的圆分别交边AF、BF于C、E两点,CD⊥AF.AC是∠DAB的平分线,(1)求证:直线CD是⊙O的切线.(2)求证:△FEC是等腰三角形20.(8分)解方程:(1)x2﹣2x﹣3=1;(2)x(x+1)=1.21.(8分)阅读以下材料,并按要求完成相应地任务:莱昂哈德·欧拉(LeonhardEuler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其外心和内心,则.如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切分于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.下面是该定理的证明过程(部分):延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.∵∠D=∠N,∠DMI=∠NAI(同弧所对的圆周角相等),∴△MDI∽△ANI,∴,∴①,如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF,∵DE是⊙O的直径,∴∠DBE=90°,∵⊙I与AB相切于点F,∴∠AFI=90°,∴∠DBE=∠IFA,∵∠BAD=∠E(同弧所对圆周角相等),∴△AIF∽△EDB,∴,∴②,任务:(1)观察发现:,(用含R,d的代数式表示);(2)请判断BD和ID的数量关系,并说明理由;(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为cm.22.(10分)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E,(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)23.(10分)如图内接于,,CD是的直径,点P是CD延长线上一点,且.求证:PA是的切线;若,求的直径.24.(10分)如图,海南省三沙市一艘海监船某天在黄岩岛P附近海域由南向北巡航,某一时刻航行到A处,测得该岛在北偏东30°方向,海监船以20海里/时的速度继续航行,2小时后到达B处,测得该岛在北偏东75°方向,求此时海监船与黄岩岛P的距离BP的长.(结果精确到0.1海里,参考数据:tan75°≈3.732,sin75°≈0.966,sin15°≈0.259,≈1.414,≈1.732)25.(12分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果;(2)求摸出的两个小球号码之和等于4的概率.26.如图.电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A,B,C都可使小灯泡发光.(1)任意闭合其中一个开关,则小灯泡发光的概率等于多少;(2)任意闭合其中两个开关,请用画树状图或列表的方法求出小灯泡发光的概率.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据三角形的内切圆得出∠OBC=∠ABC,∠OCB=∠ACB,根据三角形的内角和定理求出∠ABC+∠ACB的度数,进一步求出∠OBC+∠OCB的度数,根据三角形的内角和定理求出即可.【详解】∵点O是△ABC的内切圆的圆心,∴∠OBC=∠ABC,∠OCB=∠ACB.∵∠A=80°,∴∠ABC+∠ACB=180°﹣∠A=100°,∴∠OBC+∠OCB=(∠ABC+∠ACB)=50°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣50°=130°.故选B.【点睛】本题主要考查对三角形的内角和定理,三角形的内切圆与内心等知识点的理解和掌握,能求出∠OBC+∠OCB的度数是解答此题的关键.2、B【分析】根据圆O的半径和圆心O到直线l的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.【详解】解:∵⊙O的半径为5,圆心O到直线l的距离为3,∵5>3,即:d<r,∴直线L与⊙O的位置关系是相交.故选:B.【点睛】本题主要考查了对直线与圆的位置关系的性质,掌握直线与圆的位置关系的性质是解此题的关键.3、A【分析】先根据反比例函数的性质判断出k的取值,再根据一次函数的性质判断出k取值,二者一致的即为正确答案.【详解】解:当k>0时,反比例函数的系数﹣k<0,反比例函数过二、四象限,一次函数过一、二、三象限,原题没有满足的图形;当k<0时,反比例函数的系数﹣k>0,所以反比例函数过一、三象限,一次函数过二、三、四象限.故选:A.4、A【解析】直接得出2的个数,再利用概率公式求出答案.【解答】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴朝上一面的数字是2的概率为:故选A.【点评】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.5、D【分析】首先证明BD=DE=2AD,再由DE∥BC,可得,求出EC即可解决问题.【详解】解:∵DE∥BC,∴∠DEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠DEB=∠DBE,∴DB=DE,∵DE=2AD,∴BD=2AD,∵DE∥BC,∴,∴,∴EC=4,∴AC=AE+EC=2+4=6,故选:D.【点睛】此题考查平行线分线段成比例,由DE∥BC,可得,求出EC即可解决问题.6、B【详解】解:对角线互相垂直平分的四边形为菱形.已知对角线AC、BD互相垂直,则需添加条件:AC、BD互相平分故选:B7、C【分析】根据比例关系即可求解.【详解】∵模特身高165cm,下半身长x(cm)与身高l(cm)的比值是0.1,∴=0.1,解得:x=99,设需要穿的高跟鞋是ycm,则根据黄金分割的定义得:=0.612,解得:y≈2.故选:C.【点睛】此题主要考查比例的性质,解题的关键是熟知比例关系的定义.8、A【分析】首先分别求出扇形和圆的半径,再根据面积公式求出面积,最后求出比值即可.【详解】如图1,连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=1,∵∠AOB=41°,∴OB=AB=1,由勾股定理得:,∴扇形的面积是;如图2,连接MB、MC,∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=41°,∵BC=1,∴MC=MB=,∴⊙M的面积是,∴扇形和圆形纸板的面积比是,即圆形纸片和扇形纸片的面积比是4:1.故选:A.【点睛】本题考查了正方形性质,圆内接四边形性质,扇形的面积公式的应用,解此题的关键是求出扇形和圆的面积,题目比较好,难度适中.9、B【分析】根据位似图形的面积比得出相似比,然后根据各点的坐标确定其对应点的坐标即可.【详解】解:∵四边形OABC与四边形O′A′B′C′关于点O位似,且四边形的面积等于四边形OABC面积的,∴四边形OABC与四边形O′A′B′C′的相似比为2:3,∵点A,B,C分别的坐标),∴点A′,B′,C′的坐标分别是(3,0),(6,6),(-3,3)或(-3,0),(-6,-6),(3,-3).
故选:B.【点睛】本题考查了位似变换及坐标与图形的知识,解题的关键是根据两图形的面积的比确定其位似比,注意有两种情况.10、B【解析】∵AC>BC,∴AC是较长的线段,根据黄金分割的定义可知:=≈0.618,故A、C、D正确,不符合题意;AC2=AB•BC,故B错误,符合题意;故选B.11、D【分析】直接利用平行线分线段成比例定理对各选项进行判断即可.【详解】解:∵a∥b∥c,
∴,∵AB=1.5,BC=2,DE=1.8,∴,∴EF=2.4
故选:D.【点睛】本题考查了平行线分线段成比例,掌握三条平行线截两条直线,所得的对应线段成比例是关键.12、B【分析】根据切线的性质得到∠ODA=90°,根据直角三角形的性质求出∠DOA,根据圆周角定理计算即可.【详解】解:∵切于点∴∴∵∴∴故选:B【点睛】本题考查了切线的性质:圆心与切点的连线垂直切线、圆周角定理以及直角三角形两锐角互余的性质,结合图形认真推导即可得解.二、填空题(每题4分,共24分)13、二、四【解析】:∵k=-1<0,∴反比例函数y="-1/x"中,图象在第二、四象限14、【分析】由分式的性质和等比性质,即可得到答案.【详解】解:∵,∴,由等比性质,得:;故答案为:.【点睛】本题考查了比例的性质,以及分式的性质,解题的关键是熟练掌握等比性质.15、67°【分析】根据切线的性质定理可得到∠OAP=∠OBP=90°,再根据四边形的内角和求出∠AOB,然后根据圆周角定理解答.【详解】解:∵PA,PB分别与⊙O相切于A,B两点,∴∠OAP=90°,∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣46°=134°,∴∠C=∠AOB=67°,故答案为:67°.【点睛】本题考查了圆的切线的性质、四边形的内角和和圆周角定理,属于常见题型,熟练掌握上述知识是解题关键.16、65°【解析】试题分析:先根据圆周角定理求出∠A的度数,再由垂径定理求出∠AED的度数,进而可得出结论.∵∠C=25°,∴∠A=∠C=25°.∵⊙O的直径AB过弦CD的中点E,∴AB⊥CD,∴∠AED=90°,∴∠D=90°﹣25°=65°考点:圆周角定理17、.【详解】连接BH,如图所示:∵四边形ABCD和四边形BEFG是正方形,∴∠BAH=∠ABC=∠BEH=∠F=90°,由旋转的性质得:AB=EB,∠CBE=30°,∴∠ABE=60°,在Rt△ABH和Rt△EBH中,∵BH=BH,AB=EB,∴Rt△ABH≌△Rt△EBH(HL),∴∠ABH=∠EBH=∠ABE=30°,AH=EH,∴AH=AB•tan∠ABH==1,∴EH=1,∴FH=,在Rt△FKH中,∠FKH=30°,∴KH=2FH=,∴AK=KH﹣AH==;故答案为.考点:旋转的性质.18、【解析】根据一元二次方程的解的定义,将x=2代入已知方程,列出关于q的新方程,通过解该方程即可求得q的值.【详解】∵x=2是方程x²-3x+q=0的一个根,
∴x=2满足该方程,
∴2²-3×2+q=0,
解得,q=2.
故答案为2.【点睛】本题考查了方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.三、解答题(共78分)19、(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)先判断出∠FAC=∠ACO,进而得出AF∥CO,即可得出结论;(2)先用等腰三角形的三线合一得出AF=AB.再用同角的补角相等得出∠FEC=∠B即可得出结论.试题解析:(1)连接OC,则∠CAO=∠ACO,又∠FAC=∠CAO∴∠FAC=∠ACO,∴AF∥CO,而CD⊥AF,∴CO⊥CD,即直线CD是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°又∠FAC=∠CAO∴AF=AB(三线合一),∴∠F=∠B,∵四边形EABC是⊙O的内接四边形,∵∠FEC+∠AEC=180°,∠B+∠AEC=180°∴∠FEC=∠B∴∠F=∠FEC,即EC=FC所以△FEC是等腰三角形.20、(1);(2)【分析】(1)利用因式分解法求解可得;(2)根据因式分解的性质,直接得到答案即可.【详解】解:(1)x2﹣2x﹣3=1;(2).【点睛】本题考查了解一元二次方程,应熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21、(1)R-d;(2)BD=ID,理由见解析;(3)见解析;(4).【解析】(1)直接观察可得;(2)由三角形内心的性质可得∠BAD=∠CAD,∠CBI=∠ABI,由圆周角定理可得∠DBC=∠CAD,再根据三角形外角的性质即可求得∠BID=∠DBI,继而可证得BD=ID;(3)应用(1)(2)结论即可;(4)直接代入结论进行计算即可.【详解】(1)∵O、I、N三点共线,∴OI+IN=ON,∴IN=ON﹣OI=R﹣d,故答案为:R﹣d;(2)BD=ID,理由如下:∵点I是△ABC的内心,∴∠BAD=∠CAD,∠CBI=∠ABI,∵∠DBC=∠CAD,∠BID=∠BAD+∠ABI,∠DBI=∠DBC+∠CBI,∴∠BID=∠DBI,∴BD=ID;(3)由(2)知:BD=ID,又,,∴DE·IF=IM·IN,∴,∴∴;(4)由(3)知:,把R=5,r=2代入得:,∵d>0,∴,故答案为:.【点睛】本题是圆综合题,主要考查了三角形外接圆、外心和内切圆、内心,圆周角性质,角平分线定义,三角形外角性质等,综合性较强,熟练掌握相关知识是解题的关键.22、(1)见解析;(2)【分析】(1)连接OD,由BC是⊙O的切线,可得∠ABC=90°,由CD=CB,OB=OD,易证得∠ODC=∠ABC=90°,即可证得CD为⊙O的切线.(2)在Rt△OBF中,∠ABD=30°,OF=1,可求得BD的长,∠BOD的度数,又由,即可求得答案.【详解】解:(1)证明:连接OD,∵BC是⊙O的切线,∴∠ABC=90°.∵CD=CB,∴∠CBD=∠CDB.∵OB=OD,∴∠OBD=∠ODB.∴∠ODC=∠ABC=90°,即OD⊥CD.∵点D在⊙O上,∴CD为⊙O的切线.(2)在Rt△OBF中,∵∠ABD=30°,OF=1,∴∠BOF=60°,OB=2,BF=.∵OF⊥BD,∴BD=2BF=2,∠BOD=2∠BOF=120°,∴.23、(1)详见解析;(2)的直径为.【解析】连接OA,根据圆周角定理求出,再根据同圆的半径相等从而可得,继而根据等腰三角形的性质可得出,继而由,可得出,从而得出结论;利用含的直角三角形的性质求出,可得出,再由,可得出的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第六章平行四边形教案
- C语言专升本教案
- 《网络综合布线系统工程技术实训教程(第5版)》 课件全套 王公儒主 第1-15章 网络综合布线系统工程技术- 综合布线系统工程管理
- DB11T 1004-2013 房屋建筑使用安全检查技术规程
- 医疗服务流程信息化
- 旅游景区非招投标采购管理指南
- 疾病防控院墙施工合同
- 农民工薪资支付法律咨询
- 贷款承诺书模板:二手房按揭指南
- 网络口碑营销策略
- 2023-2024学年上海市高二上册期中合格考地理学情调研试题(含解析)
- 文件更改记录表
- 专题02 完形填空-【中职专用】陕西省2014年-2019年对口高考英语真题分类汇编(原卷版)
- 第12课观察星空(教学课件)六年级科学上册
- 八年级语文《桃花源记》信息化教学设计方案
- 2023年新全国《退役军人保障法》知识竞赛题库与答案解析
- 临床微生物学检验:实验七 肠道杆菌的检验(二)
- 立冬-PPT-二十四节气课件
- 氢能与燃料电池电动汽车第5章 氢与燃料电池
- 【唐律疏议的特点及影响14000字(论文)】
- 北师大版五年级数学上册《平移》评课稿
评论
0/150
提交评论