2023年山东省潍坊诸城市数学九年级第一学期期末调研试题含解析_第1页
2023年山东省潍坊诸城市数学九年级第一学期期末调研试题含解析_第2页
2023年山东省潍坊诸城市数学九年级第一学期期末调研试题含解析_第3页
2023年山东省潍坊诸城市数学九年级第一学期期末调研试题含解析_第4页
2023年山东省潍坊诸城市数学九年级第一学期期末调研试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年山东省潍坊诸城市数学九年级第一学期期末调研试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若分式的运算结果为,则在中添加的运算符号为()A.+ B.- C.+或÷ D.-或×2.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是()A.25° B.27.5° C.30° D.35°3.如图,函数,的图像与平行于轴的直线分别相交于两点,且点在点的右侧,点在轴上,且的面积为1,则()A. B.C. D.4.用配方法解方程时,可将方程变形为()A. B. C. D.5.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()A.20° B.35° C.40° D.55°6.在Rt△ABC中,∠C=90°.若AC=2BC,则sinA的值是()A. B. C. D.27.某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.图表示的是该电路中电流I与电阻R之间函数关系的图象,则用电阻R表示电流I的函数解析式为()A. B. C. D.8.如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b,其中正确的结论有()A.1个 B.2个 C.3个 D.4个9.如图,在莲花山滑雪场滑雪,需从山脚下乘缆车上山,缆车索道与水平线所成的角为,缆车速度为每分钟米,从山脚下到达山顶缆车需要分钟,则山的高度为()米.A. B.C. D.10.将一元二次方程化成一般式后,二次项系数和一次项系数分别为()A.4,3 B.4,7 C.4,-3 D.11.若点在反比例函数的图象上,且,则下列各式正确的是()A. B. C. D.12.下列图形是中心对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.如果反比例函数的图象经过点,则该反比例函数的解析式为____________14.如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数和的图象交于点A和点B,若C为x轴上任意一点,连接AC,BC,则的面积是________.15.一元二次方程的根是.16.从,0,,,1.6中随机取一个数,取到无理数的概率是__________.17.如图,小华同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,使斜边DF与地面保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边,,测得边DF离地面的高度,,则树AB的高度为_______cm.18.若函数是反比例函数,则________.三、解答题(共78分)19.(8分)如图,AB是⊙O的直径,⊙O过AC的中点D,DE切⊙O于点D,交BC于E.(1)求证DE⊥BC;(2)若⊙O的半径为5,BE=2,求DE的长度.20.(8分)如图,已知线段,于点,且,是射线上一动点,,分别是,的中点,过点,,的圆与的另一交点(点在线段上),连结,.(1)当时,求的度数;(2)求证:;(3)在点的运动过程中,当时,取四边形一边的两端点和线段上一点,若以这三点为顶点的三角形是直角三角形,且为锐角顶点,求所有满足条件的的值.21.(8分)从甲、乙、丙、丁4名同学中随机抽取同学参加学校的座谈会(1)抽取一名同学,恰好是甲的概率为(2)抽取两名同学,求甲在其中的概率。22.(10分)已知二次函数的图像经过点(-2,40)和点(6,-8),求一元二次方程的根.23.(10分)某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y件.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)当销售单价为多少元时,销售这种童装每月可获利1800元?(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?24.(10分)如图,一天,我国一渔政船航行到A处时,发现正东方向的我领海区域B处有一可疑渔船,正在以12海里∕小时的速度向西北方向航行,我渔政船立即沿北偏东60º方向航行,1.5小时后,在我领海区域的C处截获可疑渔船.问我渔政船的航行路程是多少海里?(结果保留根号)25.(12分)某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可售出500千克,销售单价每涨价1元,月销售量就减少10千克.(1)①求出月销售量y(千克)与销售单价x(元/千克)之间的函数关系式;②求出月销售利润w(元)与销售单价x(元/千克)之间的函数关系式;(2)在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为多少元?(3)当销售单价定为多少元时,能获得最大利润?最大利润是多少元?26.当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;(3)现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据分式的运算法则即可求出答案.【详解】解:+=,÷==x,故选:C.【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.2、D【解析】分析:直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.详解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故选D.点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.3、A【解析】根据△ABC的面积=•AB•yA,先设A、B两点坐标(其y坐标相同),然后计算相应线段长度,用面积公式即可求解.【详解】设A(,m),B(,m),则:△ABC的面积=,则a−b=1.故选:A.【点睛】本题考查了反比例函数的性质、反比例函数系数k的几何意义、反比例函数图象上点的坐标特征,根据函数的特征设A、B两点的坐标是解题的关键.4、D【分析】配方法一般步骤:将常数项移到等号右侧,左右两边同时加一次项系数一半的平方,配方即可.【详解】解:故选D.【点睛】本题考查了配方法解方程的步骤,属于简单题,熟悉步骤是解题关键.5、B【解析】连接FB,由邻补角定义可得∠FOB=140°,由圆周角定理求得∠FEB=70°,根据等腰三角形的性质分别求出∠OFB、∠EFB的度数,继而根据∠EFO=∠EBF-∠OFB即可求得答案.【详解】连接FB,则∠FOB=180°-∠AOF=180°-40°=140°,∴∠FEB=∠FOB=70°,∵FO=BO,∴∠OFB=∠OBF=(180°-∠FOB)÷2=20°,∵EF=EB,∴∠EFB=∠EBF=(180°-∠FEB)÷2=55°,∴∠EFO=∠EBF-∠OFB=55°-20°=35°,故选B.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.6、C【分析】设BC=x,可得AC=2x,Rt△ABC中利用勾股定理算出AB=x,然后利用三角函数在直角三角形中的定义,可算出sinA的值.【详解】解:由AC=2BC,设BC=x,则AC=2x,

∵Rt△ABC中,∠C=90°,

∴根据勾股定理,得AB=.

因此,sinA=.

故选:C.【点睛】本题已知直角三角形的两条直角边的关系,求角A的正弦之值.着重考查了勾股定理、三角函数的定义等知识,属于基础题.7、C【解析】设,那么点(3,2)满足这个函数解析式,∴k=3×2=1.∴.故选C8、C【解析】试题分析:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x==1,∴b=﹣2a<0,所以②正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以①正确;∵点(﹣2,0)关于直线x=1的对称点的坐标为(4,0),∴抛物线与x轴的另一个交点坐标为(4,0),所以③正确;∵x=﹣1时,y<0,即a﹣b+c<0,∴a+c<b,所以④错误.故选C.考点:抛物线与x轴的交点;二次函数图象与系数的关系.9、C【分析】在中,利用∠BAC的正弦解答即可.【详解】解:在中,,,(米),∵,(米).故选.【点睛】本题考查了三角函数的应用,属于基础题型,熟练掌握三角函数的定义是解题的关键.10、C【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【详解】解:化成一元二次方程一般形式是4x2-1x+7=0,则它的二次项系数是4,一次项系数是-1.

故选:C.【点睛】本题主要考查了一元二次方程的一般形式,关键把握要确定一次项系数,首先要把方程化成一般形式.11、C【分析】先判断反比例函数所在象限,再根据反比例函数的性质解答即可.【详解】解:反比例函数为,函数图象在第二、四象限,在每个象限内,随着的增大而增大,又,,,.故选C.【点睛】本题考查了反比例函数的图象和性质,属于基本题型,熟练掌握反比例函数的性质是解答的关键.12、B【解析】根据中心对称图形的定义,在平面内,把图形绕着某个点旋转,如果旋转后的图像能与原图形重合,就为中心对称图形.【详解】选项A,不是中心对称图形.选项B,是中心对称图形.选项C,不是中心对称图形.选项D,不是中心对称图形.故选B【点睛】本题考查了中心对称图形的定义.二、填空题(每题4分,共24分)13、【分析】根据题意把点代入,反比例函数的解析式即可求出k值进而得出答案.【详解】解:设反比例函数的解析式为:,把点代入得,所以该反比例函数的解析式为:.故答案为:.【点睛】本题考查反比例函数的解析式,根据题意将点代入并求出k值是解题的关键.14、1【分析】连接OA、OB,如图,由于AB∥x轴,根据反比例函数k的几何意义得到S△OAP=2,S△OBP=1,则S△OAB=1,然后利用AB∥OC,根据三角形面积公式即可得到S△CAB=S△OAB=1.【详解】连接OA,OB,如图轴,,,∴,,∴.故答案为:1.【点睛】本题考查了反比例函数(k≠0)系数k的几何意义:从反比例函数(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.15、【解析】四种解一元二次方程的解法即:直接开平方法,配方法,公式法,因式分解法.注意识别使用简单的方法进行求解,此题应用因式分解法较为简捷,因此,.16、【分析】由题意可得共有5种等可能的结果,其中无理数有:,共2种情况,则可利用概率公式求解.【详解】∵共有5种等可能的结果,无理数有:,共2种情况,∴取到无理数的概率是:.故答案为:.【点睛】此题考查了概率公式的应用与无理数的定义.此题比较简单,注意用到的知识点为:概率=所求情况数与总情况数之比.17、420【分析】先判定△DEF和△DBC相似,然后根据相似三角形对应边成比例列式求出BC的长,再加上AC即可得解.【详解】解:在△DEF和△DBC中,∠D=∠D,∠DEF=∠DCB,∴△DEF∽△DCB,∴,解得BC=300cm,∵,∴AB=AC+BC=120+300=420m,即树高420m.故答案为:420.【点睛】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例的性质,比较简单,判定出△DEF和△DBC相似是解题的关键.18、-1【分析】根据反比例函数的定义可求出m的值.【详解】解:∵函数是反比例函数∴解得,.故答案为:-1.【点睛】本题考查的知识点是反比例函数的定义,比较基础,易于掌握.三、解答题(共78分)19、(1)证明见解析;(2)DE=4【分析】(1)连接OD,DE是切线,则OD⊥DE,则OD是△ABC的中位线,可得OD∥BC,据此即可求证;(2)过B作OD的垂线,垂足为F,证明四边形DFBE为矩形,Rt△OFB中用勾股定理即可求得DE的长度.【详解】证明(1)连接OD∵DE切⊙O于点D∴OD⊥DE∴∠ODE=90°∵D是AC的中点,O是AB的中点∴OD是△ABCD的中位线∴OD∥BC∴∠DEC=90°∴DE⊥BC(2)过B作BF⊥OD∵BF⊥OD∴∠DFB=90°∴∠DFB=∠DEB=∠ODE=90°∴四边形DFBE为矩形∴DF=BE=2∴OF=OD-DF=5-2=3∴DE=BF=4【点睛】本题考查了圆的切线的性质、三角形中位线的判定和性质、矩形的判定和性质、直角三角形的性质,辅助线是关键.20、(1)75°;(2)证明见解析;(3)或或.【分析】(1)根据三角形ABP是等腰三角形,可得∠B的度数;(2)连接MD,根据MD为△PAB的中位线,可得∠MDB=∠APB,再根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出△ABC∽△PBA,得出答案即可;(3)记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2,即可得到PR=,MR=,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ=90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ的值.【详解】解:(1)∵MN⊥AB,AM=BM,∴PA=PB,∴∠PAB=∠B,∵∠APB=30°,∴∠B=75°,(2)如图1,连接MD,∵MD为△PAB的中位线,∴MD∥AP,∴∠MDB=∠APB,∵∠BAC=∠MDC=∠APB,又∵∠BAP=180°-∠APB-∠B,∠ACB=180°-∠BAC-∠B,∴∠BAP=∠ACB,∵∠BAP=∠B,∴∠ACB=∠B,∴AC=AB,由(1)可知PA=PB,∴△ABC∽△PBA,∴,∴AB2=BC•PB;(3)如图2,记MP与圆的另一个交点为R,∵MD是Rt△MBP的中线,∴DM=DP,∴∠DPM=∠DMP=∠RCD,∴RC=RP,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4-PR)2=22+PR2,∴PR=,∴MR=,(一)当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=;(二)如图3,当∠QCD=90°时,在Rt△QCP中,PQ=2PR=,∴MQ=;(三)如图4,当∠QDC=90°时,∵BM=1,MP=4,∴BP=,∴DP=BP=,∵cos∠MPB=,∴PQ=,∴MQ=;(四)如图5,当∠AEQ=90°时,由对称性可得∠AEQ=∠BDQ=90°,∴MQ=;综上所述,MQ的值为或或.【点睛】此题主要考查了圆的综合题、等腰三角形的性质、三角形中位线定理,勾股定理,圆周角定理的综合应用,解决问题的关键是作辅助线构造直角三角形,运用旋转的性质以及含30°角的直角三角形的性质进行计算求解,解题时注意分类思想的运用.21、(1);(2).【解析】(1)由从甲、乙、丙、丁4名同学中抽取同学参加学校的座谈会,直接利用概率公式求解即可求得答案;(2)利用列举法可得抽取2名,可得:甲乙、甲丙、甲丁、乙丙、乙丁、丙丁共6种等可能的结果,甲在其中的有3种情况,然后利用概率公式求解即可求得答案.【详解】(1)随机抽取1名学生,可能出现的结果有4种,即甲、乙、丙、丁,并且它们出现的可能性相等,恰好抽取1名恰好是甲的结果有1种,所以抽取一名同学,恰好是甲的概率为,故答案为:;(2)随机抽取2名学生,可能出现的结果有6种,即甲乙、甲丙、甲丁、乙丙、乙丁、丙丁,并且它们出现的可能性相等,恰好抽取2名甲在其中的结果有3种,即甲乙、甲丙、甲丁,故抽取两名同学,甲在其中的概率为=.【点睛】本题考查的是列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.22、x1=2,x2=8.【分析】把已知两点坐标代入二次函数解析式求出a与b的值,代入方程计算即可求出解.【详解】解:将点(-2,40)和点(6,-8)代入二次函数得,解得:∴求得二次函数关系式为,当y=0时,,解得x1=2,x2=8.【点睛】此题考查了抛物线与x轴的交点,抛物线与x轴的交点与根的判别式有关:根的判别式大于0,有两个交点;根的判别式大于0,没有交点;根的判别式等于0,有一个交点.23、(1)y=﹣2x+200(30≤x≤60);(2)当销售单价为55元时,销售这种童装每月可获利1800元;(3)当销售单价为60元时,销售这种童装每月获得利润最大,最大利润是1950元.【分析】(1)当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.从而用60减去x,再除以10,就是降价几个10元,再乘以20,再把80加上就是平均月销售量;(2)利用(售价﹣进价)乘以平均月销售量,再减去每月需要支付的其他费用,让其等于1800,解方程即可;(3)由(2)方程式左边,可得每月获得的利润函数,写成顶点式,再结合函数的自变量取值范围,可求得取最大利润时的x值及最大利润.【详解】解:(1)由题意得:y=80+20×∴函数的关系式为:y=﹣2x+200(30≤x≤60)(2)由题意得:(x﹣30)(﹣2x+200)﹣450=1800解得x1=55,x2=75(不符合题意,舍去)答:当销售单价为55元时,销售这种童装每月可获利1800元.(3)设每月获得的利润为w元,由题意得:w=(x﹣30)(﹣2x+200)﹣450=﹣2(x﹣65)2+2000∵﹣2<0∴当x≤65时,w随x的增大而增大∵30≤x≤60∴当x=60时,w最大=﹣2(60﹣65)2+2000=1950答:当销售单价为60元时,销售这种童装每月获得利润最大,最大利润是1950元.【点睛】本题综合考查了一次函数、一元二次方程、二次函数在实际问题中的应用,具有较强的综合性.24、我渔政船的航行路程是海里.【分析】过C点作AB的垂线,垂足为D,构建Rt△ACD,Rt△BCD,解这两个直角三角形即可.【详解】解:如图:作CD⊥AB于点D,∵在Rt△BCD中,BC=12×1.5=18海里,∠CBD=45°,∴CD=BC•sin45°=(海里).∴在Rt△ACD中,AC=CD÷sin30°=(海里).答:我渔政船的航行路程是海里.点睛:考查了解直角三角形的应用(方向角问题),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论