2023年南通市重点中学九年级数学第一学期期末调研试题含解析_第1页
2023年南通市重点中学九年级数学第一学期期末调研试题含解析_第2页
2023年南通市重点中学九年级数学第一学期期末调研试题含解析_第3页
2023年南通市重点中学九年级数学第一学期期末调研试题含解析_第4页
2023年南通市重点中学九年级数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年南通市重点中学九年级数学第一学期期末调研试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,两个菱形,两个等边三角形,两个矩形,两个正方形,各成一组,每组中的一个图形在另一个图形的内部,对应边平行,且对应边之间的距离都相等,那么两个图形不相似的一组是()A. B. C. D.2.如图,在菱形ABCD中,于E,,,则菱形ABCD的周长是A.5 B.10 C.8 D.123.如图,⊙O的圆周角∠A=40°,则∠OBC的度数为()A.80° B.50° C.40° D.30°4.已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<3时,y随x的增大而减小.则其中说法正确的有()A.1个 B.2个 C.3个 D.4个5.用配方法解方程,下列配方正确的是()A. B.C. D.6.的值为()A. B. C. D.7.如图,在平面直角坐标系中,⊙P的圆心坐标是(-3,a)(a>3),半径为3,函数y=-x的图像被⊙P截得的弦AB的长为,则a的值是()A.4 B. C. D.8.若x=5是方程的一个根,则m的值是()A.-5 B.5 C.10 D.-109.若是一元二次方程,则的值是()A.-1 B.0 C.1 D.±110.在单词mathematics(数学)中任意选择一个字母,字母为“m”的概率为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在山坡上种树时,要求株距(相邻两树间的水平距离)为6m.测得斜坡的斜面坡度为i=1:(斜面坡度指坡面的铅直高度与水平宽度的比),则斜坡相邻两树间的坡面距离为_____.12.如果将抛物线向上平移,使它经过点,那么所得新抛物线的表达式是_______________.13.如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为__.14.如图所示,在平面直角坐标系中,A(4,0),B(0,2),AC由AB绕点A顺时针旋转90°而得,则AC所在直线的解析式是_____.15.如图,在正方形ABCD的外侧,作等边△ABE,则∠BFC=_________°16.已知方程有一个根是,则__________.17.如图,正六边形ABCDEF内接于O,点M是边CD的中点,连结AM,若圆O的半径为2,则AM=____________.18.已知点,都在反比例函数图象上,则____(填“”或“”或“”).三、解答题(共66分)19.(10分)(发现)在解一元二次方程的时候,发现有一类形如x2+(m+n)x+mn=0的方程,其常数项是两个因数的积,而它的一次项系数恰好是这两个因数的和,则我们可以把它转化成x2+(m+n)x+mn=(m+x)(m+n)=0(探索)解方程:x2+5x+6=0:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3),原方程可转化为(x+2)(x+3)=0,即x+2=0或x+3=0,进而可求解.(归纳)若x2+px+q=(x+m)(x+n),则p=q=;(应用)(1)运用上述方法解方程x2+6x+8=0;(2)结合上述材料,并根据“两数相乘,同号得正,异号得负“,求出一元二次不等式x2﹣2x﹣3>0的解.20.(6分)如图,已知抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)直接写出点A、B、C的坐标;(2)在抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;(3)点D是第一象限内抛物线上的一个动点(与点C、B不重合)过点D作DF⊥x轴于点F,交直线BC于点E,连接BD,直线BC把△BDF的面积分成两部分,使,请求出点D的坐标;(4)若M为抛物线对称轴上一动点,使得△MBC为直角三角形,请直接写出点M的坐标.21.(6分)某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.请根据统计图表中的信息,解答下列问题:(1)求被抽查的学生人数和m的值;(2)求本次抽查的学生文章阅读篇数的中位数和众数;(3)若该校共有1200名学生,根据抽查结果,估计该校学生在这一周内文章阅读的篇数为4篇的人数。22.(8分)如图,抛物线与x轴交于A(1,0)、B(-3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D.

(1)求该抛物线的解析式与顶点D的坐标.

(2)试判断△BCD的形状,并说明理由.

(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.23.(8分)某区为创建《国家义务教育优质均衡发展区》,自2016年以来加大了教育经费的投入,2016年该区投入教育经费9000万元,2018年投入教育经费12960万元,假设该区这两年投入教育经费的年平均增长率相同(1)求这两年该区投入教育经费的年平均增长率(2)若该区教育经费的投入还将保持相同的年平均增长率,请你预算2019年该区投入教育经费多少万元24.(8分)如图,是的直径,是圆上的两点,且,.(1)求的度数;(2)求的度数.25.(10分)如图,小巷左右两侧是竖直的墙,一架梯子AC斜靠在右墙,测得梯子与地面的夹角为45°,梯子底端与墙的距离CB=2米,若梯子底端C的位置不动,再将梯子斜靠在左墙,测得梯子与地面的夹角为60°,则此时梯子的顶端与地面的距离A'D的长是多少米?(结果保留根号)26.(10分)如图是由9个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请按要求画出该几何体的主视图与左视图.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据相似多边形的性质逐一进行判断即可得答案.【详解】由题意得,A.菱形四条边均相等,所以对应边成比例,对应边平行,所以角也相等,所以两个菱形相似,B.等边三角形对应角相等,对应边成比例,所以两个等边三角形相似;C.矩形四个角相等,但对应边不一定成比例,所以B中矩形不是相似多边形D.正方形四条边均相等,所以对应边成比例,四个角也相等,所以两个正方形相似;故选C.【点睛】本题考查相似多边形的判定,其对应角相等,对应边成比例.两个条件缺一不可.2、C【解析】连接AC,根据线段垂直平分线的性质可得AB=AC=2,然后利用周长公式进行计算即可得答案.【详解】如图连接AC,,,,菱形ABCD的周长,故选C.【点睛】本题考查了菱形的性质、线段的垂直平分线的性质等知识,熟练掌握的灵活应用相关知识是解题的关键.3、B【分析】然后根据圆周角定理即可得到∠OBC的度数,由OB=OC,得到∠OBC=∠OCB,根据三角形内角和定理计算出∠OBC.【详解】∵∠A=40°.

∴∠BOC=80°,

∵OB=OC,

∴∠OBC=∠OCB=50°,

故选:B.【点睛】本题考查了圆周角定理:一条弧所对的圆周角是它所对的圆心角的一半;也考查了等腰三角形的性质以及三角形的内角和定理.4、A【解析】结合二次函数解析式,根据函数的性质对各小题分析判断解答即可:①∵2>0,∴图象的开口向上,故本说法错误;②图象的对称轴为直线x=3,故本说法错误;③其图象顶点坐标为(3,1),故本说法错误;④当x<3时,y随x的增大而减小,故本说法正确.综上所述,说法正确的有④共1个.故选A.5、C【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数的绝对值一半的平方.【详解】解:等式两边同时加上一次项系数的绝对值一半的平方22,,∴;故选:C.【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.6、C【分析】根据特殊角的三角函数值解答即可.【详解】tan60°=,故选C.【点睛】本题考查了特殊角三角函数值,熟记特殊角的三角函数值是解题关键.7、B【分析】如图所示过点P作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,可得OC=3,PC=a,把x=-3代入y=-x得y=3,可确定D点坐标,可得△OCD为等腰直角三角形,得到△PED也为等腰直角三角形,又PE⊥AB,由垂径定理可得AE=BE=AB=2,在Rt△PBE中,由勾股定理可得PE=,可得PD=PE=,最终求出a的值.【详解】作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(-3,a),∴OC=3,PC=a,把x=-3代入y=-x得y=3,∴D点坐标为(-3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选B.【点睛】本题主要考查了垂径定理、一次函数图象上点的坐标特征以及勾股定理,熟练掌握圆中基本定理和基础图形是解题的关键.8、D【分析】先把x=5代入方程得到关于m的方程,然后解此方程即可.【详解】解:把x=5代入方程得到25-3×5+m=0,

解得m=-1.

故选:D.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9、C【分析】根据一元二次方程的概念即可列出等式,求出m的值.【详解】解:若是一元二次方程,则,解得,又∵,∴,故,故答案为C.【点睛】本题考查了一元二次方程的定义,熟知一元二次方程的定义并列出等式是解题的关键.10、B【分析】根据概率公式进行计算即可.【详解】在单词“mathematics”中,共11个字母,其中有2个字母“m”,故从中任意选择一个字母,这个字母为“m”的概率是.故选:B.【点睛】本题考查概率的计算,熟记概率公式是解题关键.二、填空题(每小题3分,共24分)11、4米.【分析】首先根据斜面坡度为i=1:求出株距(相邻两树间的水平距离)为6m时的铅直高度,再利用勾股定理计算出斜坡相邻两树间的坡面距离.【详解】由题意水平距离为6米,铅垂高度2米,∴斜坡上相邻两树间的坡面距离=(m),故答案为:4米.【点睛】此题考查解直角三角形的应用,解题关键是掌握计算法则.12、【解析】试题解析:设平移后的抛物线解析式为y=x2+2x-1+b,把A(0,1)代入,得1=-1+b,解得b=4,则该函数解析式为y=x2+2x+1.考点:二次函数图象与几何变换.13、1【分析】本题是典型的一线三角模型,根据正方形的性质、直角三角形两个锐角互余以及等量代换可以证得△AFB≌△AED;然后由全等三角形的对应边相等推知AF=DE、BF=AE,所以EF=AF+AE=1.【详解】解:∵ABCD是正方形(已知),∴AB=AD,∠ABC=∠BAD=90°;又∵∠FAB+∠FBA=∠FAB+∠EAD=90°,∴∠FBA=∠EAD(等量代换);∵BF⊥a于点F,DE⊥a于点E,∴在Rt△AFB和Rt△AED中,∵,∴△AFB≌△DEA(AAS),∴AF=DE=8,BF=AE=5(全等三角形的对应边相等),∴EF=AF+AE=DE+BF=8+5=1.故答案为:1.【点睛】本题考查了正方形的性质、直角三角形的性质、全等三角形的判定和性质及熟悉一线三角模型是解本题的关键.14、y=2x﹣1【分析】过点C作CD⊥x轴于点D,易知△ACD≌△BAO(AAS),已知A(4,0),B(0,2),从而求得点C坐标,设直线AC的解析式为y=kx+b,将点A,点C坐标代入求得k和b,从而得解.【详解】解:∵A(4,0),B(0,2),∴OA=4,OB=2,过点C作CD⊥x轴于点D,∵∠ABO+∠BAO=∠BAO+∠CAD,∴∠ABO=∠CAD,在△ACD和△BAO中,∴△ACD≌△BAO(AAS)∴AD=OB=2,CD=OA=4,∴C(6,4)设直线AC的解析式为y=kx+b,将点A,点C坐标代入得,∴∴直线AC的解析式为y=2x﹣1.故答案为:y=2x﹣1.【点睛】本题是几何图形旋转的性质与待定系数法求一次函数解析式的综合题,求得C的坐标是解题的关键,难度中等.15、1【解析】根据正方形的性质及等边三角形的性质求出∠ADE=15°,∠DAC=45°,再求∠DFC,证△DCF≅△BCF,可得∠BFC=∠DFC.【详解】∵四边形ABCD是正方形,

∴AB=AD=CD=BC,∠DCF=∠BCF=45°

又∵△ABE是等边三角形,

∴AE=AB=BE,∠BAE=1°

∴AD=AE

∴∠ADE=∠AED,∠DAE=90°+1°=150°

∴∠ADE=(180°-150°)÷2=15°

又∵∠DAC=45°

∴∠DFC=45°+15°=1°在△DCF和△BCF中CD=BC∠DCF=∠BCF∴△DCF≅△BCF∴∠BFC=∠DFC=1°

故答案为:1.【点睛】本题主要是考查了正方形的性质和等边三角形的性质,本题的关键是求出∠ADE=15°.16、1【分析】把方程的根x=1代入即可求解.【详解】把x=1代入得:1-m+n=0m-n=1故答案为:1【点睛】本题考查的是方程的解的定义,理解方程解的定义是关键.17、【分析】连接AD,过M作MG⊥AD于G,根据正六边形的相关性质,求得AD,MD的值,再根据∠CDG=60°,求出DG,MG的值,最后利用勾股定理求出AM的值.【详解】解:连接AD,过M作MG⊥AD于G,则由正六边形可得,AD=2AB=4,∠CDA=60°,又MD=CD=1,∴DG=,MG=,∴AG=AD-DG=,∴AM=故答案为.【点睛】本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,作出辅助线构造直角三角形是解题的关键.18、【分析】先判断,则图像经过第一、三象限,根据反比例函数的性质,即可得到答案.【详解】解:∵,∴反比例函数的图象在第一、三象限,且在每个象限内y随x增大而减小,∵,∴,故答案为:.【点睛】本题考查了反比例函数的图象和性质,解题的关键是掌握时,反比例函数经过第一、三象限,且在每个象限内y随x增大而减小.三、解答题(共66分)19、归纳:m+n,m;应用(1):x1=﹣2,x2=4;(2)x>3或x﹣1【分析】归纳:根据题意给出的方法即可求出答案.应用:(1)根据题意给出的方法即可求出答案;(2)根据题意给出的方法即可求出答案;【详解】解:归纳:故答案为:m+n,m;应用:(1)x2+6x+8=0,∴(x+2)(x+4)=0∴x+2=0,x+4=0∴x1=﹣2,x2=4;(2)∵x2﹣2x﹣3>0∴(x﹣3)(x+1)>0∴或解得:x>3或x﹣1【点睛】本题考查了一元二次方程,一元二次不等式的解及题目所给信息的总结归纳能力20、(1)点A、B、C的坐标分别为:(−1,0)、(5,0)、(0,−5);(2)P(2,3);(3)D(,);(4)M的坐标为:(2,7)或(2,−3)或(2,6)或(2,−1).【分析】(1)令y=0,则x=−1或5,令x=0,则y=−5,即可求解;(2)点B是点A关于函数对称轴的对称点,连接BC交抛物线对称轴于点P,则点P为所求,即可求解;(3)S△BDE:S△BEF=2:3,则,即:,即可求解;(4)分MB为斜边、MC为斜边、BC为斜边三种情况,分别求解即可.【详解】(1)令y=0,则x=−1或5,令x=0,则y=−5,故点A、B、C的坐标分别为:(−1,0)、(5,0)、(0,−5);(2)抛物线的对称轴为:x=2,点B是点A关于函数对称轴的对称点,连接BC交抛物线对称轴于点P,则点P为所求,直线BC的表达式为:y=−x+5,当x=2时,y=3,故点P(2,3);(3)设点D(x,−x2+4x+5),则点E(x,−x+5),∵S△BDE:S△BEF=2:3,则,即:,解得:m=或5(舍去5),故点D(,);(4)设点M(2,m),而点B、C的坐标分别为:(5,0)、(0,−5),则MB2=9+m2,MC2=4+(m−5)2,BC2=50,①当MB为斜边时,则9+m2=4+(m−5)2+50,解得:m=7;②当MC为斜边时,则4+(m−5)2=9+m2+50,可得:m=−3;③当BC为斜边时,则4+(m−5)2+9+m2=50可得:m=6或−1;综上点M的坐标为:(2,7)或(2,−3)或(2,6)或(2,−1).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、点的对称性、图形的面积计算等,其中(4),要注意分类求解,避免遗漏.21、(1)50,12;(2)5,4;(3)336.【分析】(1)先由6篇的人数及其所占百分比求得总人数,总人数减去其他篇数的人数求得m的值;(2)根据中位数和众数的定义求解;(3)用总人数乘以样本中4篇的人数所占比例即可得.【详解】解:(1)被调查的总人数为8÷16%=50人,m=50-(10+14+8+6)=12;(2)由于共有50个数据,其中位数为第25、26个数据的平均数,而第25、26个数据均为5篇,所以中位数为5篇,出现次数最多的是4篇,所以众数为4篇;(3)估计该校学生在这一周内文章阅读的篇数为4篇的人数为人.【点睛】本题考查的是扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.22、(1)y=-x2-2x+1,(-1,4);(2)△BCD是直角三角形.理由见解析;(1)P1(0,0),P2(0,−),P1(−9,0).【分析】(1)利用待定系数法即可求得函数的解析式;

(2)利用勾股定理求得△BCD的三边的长,然后根据勾股定理的逆定理即可作出判断;

(1)分p在x轴和y轴两种情况讨论,舍出P的坐标,根据相似三角形的对应边的比相等即可求解.【详解】(1)设抛物线的解析式为y=ax2+bx+c

由抛物线与y轴交于点C(0,1),可知c=1.即抛物线的解析式为y=ax2+bx+1.

把点A(1,0)、点B(-1,0)代入,得解得a=-1,b=-2

∴抛物线的解析式为y=-x2-2x+1.

∵y=-x2-2x+1=-(x+1)2+4

∴顶点D的坐标为(-1,4);

(2)△BCD是直角三角形.

理由如下:过点D分别作x轴、y轴的垂线,垂足分别为E、F.

∵在Rt△BOC中,OB=1,OC=1,

∴BC2=OB2+OC2=18

在Rt△CDF中,DF=1,CF=OF-OC=4-1=1,

∴CD2=DF2+CF2=2

在Rt△BDE中,DE=4,BE=OB-OE=1-1=2,

∴BD2=DE2+BE2=20

∴BC2+CD2=BD2

∴△BCD为直角三角形.(1)①△BCD的三边,,又,故当P是原点O时,△ACP∽△DBC;

②当AC是直角边时,若AC与CD是对应边,设P的坐标是(0,a),则PC=1-a,,即,解得:a=-9,则P的坐标是(0,-9),三角形ACP不是直角三角形,则△ACP∽△CBD不成立;

③当AC是直角边,若AC与BC是对应边时,设P的坐标是(0,b),则PC=1-b,则,即,解得:b=-,故P是(0,-)时,则△ACP∽△CBD一定成立;

④当P在x轴上时,AC是直角边,P一定在B的左侧,设P的坐标是(d,0).

则AP=1-d,当AC与CD是对应边时,,即,解得:d=1-1,此时,两个三角形不相似;

⑤当P在x轴上时,AC是直角边,P一定在B的左侧,设P的坐标是(e,0).

则AP=1-e,当AC与DC是对应边时,,解得:e=-9,符合条件.

总之,符合条件的点P的坐标为:P1(0,0),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论