版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年江苏省仪征市九年级数学第一学期期末复习检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,AB是半圆O的直径,∠BAC=40°,则∠D的度数是()A.140° B.130° C.120° D.110°2.下列事件是必然事件的是()A.打开电视播放建国70周年国庆阅兵式B.任意翻开初中数学书一页,内容是实数练习C.去领奖的三位同学中,其中有两位性别相同D.食用保健品后长生不老3.如图,D是等边△ABC外接圆上的点,且∠CAD=20°,则∠ACD的度数为()A.20° B.30° C.40° D.45°4.如图,小明夜晚从路灯下A处走到B处这一过程中,他在路上的影子()A.逐渐变长 B.逐渐变短C.长度不变 D.先变短后变长5.如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是()A. B. C. D.6.某超市花费1140元购进苹果100千克,销售中有的正常损耗,为避免亏本(其它费用不考虑),售价至少定为多少元/千克?设售价为元/千克,根据题意所列不等式正确的是()A. B.C. D.7.下列说法正确的是()A.一颗质地硬币已连续抛掷了5次,其中抛掷出正面的次数为1次,则第6次一定抛掷出为正面B.某种彩票中奖的概率是2%,因此买100张该种彩票一定会中奖C.天气预报说2020年元旦节紫云下雨的概率是50%,所以紫云2020年元旦节这天将有一半时间在下雨D.某口袋中有红球3个,每次摸出一个球是红球的概率为100%8.下列方程有实数根的是A. B. C.+2x−1=0 D.9.一元二次方程3x2=8x化成一般形式后,其中二次项系数和一次项系数分别是()A.3,8 B.3,0 C.3,-8 D.-3,-810.如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数上,顶点B在反比例函数上,点C在x轴的正半轴上,则平行四边形OABC的面积是()A. B. C.4 D.6二、填空题(每小题3分,共24分)11.用一个半径为10的半圆,围成一个圆锥的侧面,该圆锥的底面圆的半径为_____.12.步步高超市某种商品为了去库存,经过两次降价,零售价由100元降为64元.则平均每次降价的百分率是____________.13.如图,已知在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C顺时针旋转一定角度得△DEC,此时CD⊥AB,连接AE,则tan∠EAC=____.14.已知两圆内切,半径分别为2厘米和5厘米,那么这两圆的圆心距等于_____厘米.15.已知点在直线上,也在双曲线上,则m2+n2的值为______.16.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为______元.17.如图,利用我们现在已经学过的圆和锐角三角函数的知识可知,半径r和圆心角θ及其所对的弦长l之间的关系为,从而,综合上述材料当时,______.18.如图,在⊙O中,,AB=3,则AC=_____.三、解答题(共66分)19.(10分)解分式方程:(1).(2).20.(6分)已知二次函数的图像是经过、两点的一条抛物线.(1)求这个函数的表达式,并在方格纸中画出它的大致图像;(2)点为抛物线上一点,若的面积为,求出此时点的坐标.21.(6分)某市有、两个公园,甲、乙、丙三位同学随机选择其中一个公园游玩,请利用树状图求三位同学恰好在同一个公园游玩的概率.22.(8分)如图,正方形的对角线、相交于点,过点作的平行线,过点作的平行线,它们相交于点.求证:四边形是正方形.23.(8分)如图,⊙O的直径为AB,点C在⊙O上,点D,E分别在AB,AC的延长线上,DE⊥AE,垂足为E,∠A=∠CDE.(1)求证:CD是⊙O的切线;(2)若AB=4,BD=3,求CD的长.24.(8分)以下各图均是由边长为1的小正方形组成的网格,图中的点A、B、C、D均在格点上.(1)在图①中,PC:PB=.(2)利用网格和无刻度的直尺作图,保留痕迹,不写作法.①如图②,在AB上找一点P,使AP=1.②如图③,在BD上找一点P,使△APB∽△CPD.25.(10分)解下列方程:(1)x2﹣6x+9=0;(2)x2﹣4x=12;(3)3x(2x﹣5)=4x﹣1.26.(10分)已知等边△ABC,点D为BC上一点,连接AD.图1图2(1)若点E是AC上一点,且CE=BD,连接BE,BE与AD的交点为点P,在图(1)中根据题意补全图形,直接写出∠APE的大小;(2)将AD绕点A逆时针旋转120°,得到AF,连接BF交AC于点Q,在图(2)中根据题意补全图形,用等式表示线段AQ和CD的数量关系,并证明.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据圆周角定理求出∠ACB,根据三角形内角和定理求出∠B,求出∠D+∠B=180°,再代入求出即可.【详解】∵AB是半圆O的直径,∴∠ACB=90°,∵∠BAC=40°,∴∠B=180°﹣∠ACB﹣∠BAC=50°,∵A、B、C、D四点共圆,∴∠D+∠B=180°,∴∠D=130°,故选:B.【点睛】此题主要考查圆周角定理以及圆内接四边形的性质,熟练掌握,即可解题.2、C【分析】根据必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,对每一项进行分析即可.【详解】A.打开电视播放建国70周年国庆阅兵式是随机事件,故不符合题意;B.任意翻开初中数学书一页,内容是实数练习是随机事件,故不符合题意;C.去领奖的三位同学中,其中有两位性别相同是必然事件,符合题意;D.食用保健品后长生不老是不可能事件,故不符合题意;故选C.【点睛】本题考查的是事件的分类,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.3、C【分析】根据圆内接四边形的性质得到∠D=180°-∠B=120°,根据三角形内角和定理计算即可.【详解】∴∠B=60°,∵四边形ABCD是圆内接四边形,∴∠D=180°−∠B=120°,∴∠ACD=180°−∠DAC−∠D=40°,故选C.4、A【分析】因为人和路灯间的位置发生了变化,光线与地面的夹角发生变化,所以影子的长度也会发生变化,进而得出答案.【详解】当他远离路灯走向B处时,光线与地面的夹角越来越小,小明在地面上留下的影子越来越长,所以他在走过一盏路灯的过程中,其影子的长度逐渐变长,故选:A.【点睛】此题考查了中心投影的性质,解题关键是了解人从路灯下走过的过程中,人与灯之间位置变化,光线与地面的夹角发生变化,从而导致影子的长度发生变化.5、A【分析】主视图:从物体正面观察所得到的图形,由此观察即可得出答案.【详解】从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为A.【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.6、A【分析】根据“为避免亏本”可知,总售价≥总成本,列出不等式即可.【详解】解:由题意可知:故选:A.【点睛】此题考查的是一元一次不等式的应用,掌握实际问题中的不等关系是解决此题的关键.7、D【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【详解】解:A、一颗质地硬币已连续抛掷了5次,其中抛掷出正面的次数为1次,则第6次一定抛掷出为正面,是随机事件,错误;
B、某种彩票中奖的概率是2%,因此买100张该种彩票不一定会中奖,错误;
C、下雨的概率是50%,是说明天下雨的可能性是50%,而不是明天将有一半时间在下雨,错误;
D、正确.
故选:D.【点睛】正确理解概率的含义是解决本题的关键.注意随机事件的条件不同,发生的可能性也不等.8、C【解析】A.∵x4>0,∴x4+2=0无解,故本选项不符合题意;B.∵≥0,∴=−1无解,故本选项不符合题意;C.∵x2+2x−1=0,=8>0,方程有实数根,故本选项符合题意;D.解分式方程=,可得x=1,经检验x=1是分式方程的增根,故本选项不符合题意.故选C.9、C【分析】要确定二次项系数,一次项系数,常数项,首先要把方程化成一般形式.【详解】解:∴二次项系数是,一次项系数是.故选:C【点睛】本题考查了一元二次方程的一般形式:(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.10、C【分析】作BD⊥x轴于D,延长BA交y轴于E,然后根据平行四边形的性质和反比例函数系数k的几何意义即可求得答案.【详解】解:如图作BD⊥x轴于D,延长BA交y轴于E,∵四边形OABC是平行四边形,∴AB∥OC,OA=BC,∴BE⊥y轴,∴OE=BD,∴Rt△AOE≌Rt△CBD(HL),根据反比例函数系数k的几何意义得,S矩形BDOE=5,S△AOE=,∴平行四边形OABC的面积,故选:C.【点睛】本题考查了反比例函数的比例系数k的几何意义、平行四边形的性质等,有一定的综合性二、填空题(每小题3分,共24分)11、5【解析】试题解析:∵半径为10的半圆的弧长为:×2π×10=10π∴围成的圆锥的底面圆的周长为10π设圆锥的底面圆的半径为r,则2πr=10π解得r=512、20%【分析】设平均每次降价的百分率是x,根据“经过两次降价,零售价由100元降为64元”,列出一元二次方程,求解即可.【详解】设平均每次降价的百分率是x,根据题意得:100(1﹣x)2=64,解得:x1=0.2,x2=1.8(舍去),即平均每次降价的百分率是20%.故答案为:20%.【点睛】本题考查了一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,这是一道典型的增长率问题.13、【分析】设,得,根据旋转的性质得,∠1=30°,分别求得,,继而求得答案.【详解】如图,AB与CD相交于G,过点E作EF⊥AC延长线于点F,设,∵∠ACB=90°,∠B=30°,∴,∴,根据旋转的性质知:,∠DCE=∠ACB=90°,∵CD⊥AB,∴∠1+∠BAC=90°,∴∠1=30°,∵∠1+∠2+∠DCE=1800°,∴∠2=60°,∴,,∴,故答案为:.【点睛】本题考查了旋转的性质以及锐角三角函数的知识,构建合适的辅助线,借助解直角三角形求解是解答本题的关键.14、1【解析】由两圆的半径分别为2和5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系和两圆位置关系求得圆心距即可.【详解】解:∵两圆的半径分别为2和5,两圆内切,∴d=R﹣r=5﹣2=1cm,故答案为1.【点睛】此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.15、1【解析】分析:直接利用一次函数图象上点的坐标特征以及反比例函数图象上点的特征得出n+m以及mn的值,再利用完全平方公式将原式变形得出答案.详解:∵点P(m,n)在直线y=-x+2上,∴n+m=2,∵点P(m,n)在双曲线y=-上,∴mn=-1,∴m2+n2=(n+m)2-2mn=4+2=1.故答案为1.点睛:此题主要考查了一次函数图象上点的坐标特征以及反比例函数图象上点的特征,正确得出m,n之间的关系是解题关键.16、3【解析】试题分析:设最大利润为w元,则w=(x﹣30)(30﹣x)=﹣(x﹣3)3+3,∵30≤x≤30,∴当x=3时,二次函数有最大值3,故答案为3.考点:3.二次函数的应用;3.销售问题.17、【分析】如图所示,∠AOB=θ,OA=r,AB=l,∠AOC=∠BOC=,根据,设AB=l=2a,OA=r=3a,根据等量代换得出∠BOC=∠BAE=,求出BE,利用勾股定理求出AE,即可表达出,代入计算即可.【详解】解:如图所示,∠AOB=θ,OA=r,AB=l,∠AOC=∠BOC=,∵AO=BO,∴OC⊥AB,∴,∴设AB=l=2a,OA=r=3a,过点A作AE⊥OB于点E,∵∠B+∠BOC=90°,∠B+∠BAE=90°,∴∠BOC=∠BAE=,∴,即,解得:,由勾股定理得:,∴,故答案为:.【点睛】本题考查了垂径定理以及锐角三角函数的定义,解题的关键是熟练掌握垂径定理的内容,作出辅助线,求出AE的值.18、1.【分析】根据圆心角、弧、弦、弦心距之间的关系解答即可.【详解】解:∵在⊙O中,,AB=1,
∴AC=AB=1.
故答案为1.【点睛】本题考查圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,那么它们所对的其余各组量都分别相等.三、解答题(共66分)19、(1);(2)无解【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)两边同时乘以去分母得:,去括号得:,移项合并得:,解得:,检验:时,,是原方程的解;(2)两边同时乘以去分母得:,去括号得:,移项合并得:,检验:时,,是原方程的增根,故原方程无解.【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20、(1),图画见解析;(2)或.【分析】(1)利用交点式直接写出函数的表达式,再用五点法作出函数的图象;(2)先求得AB的长,再利用三角形面积法求得点P的纵坐标,即可求得答案.【详解】(1)由题意知:..∵顶点坐标为:-1012303430描点、连线作图如下:(2)设点P的纵坐标为,,∴.∴或,将代入,得:,此时方程无解.将代入,得:,解得:;或.【点睛】本题主要考查了待定系数法求函数的解析式以及利用三角形面积法求点的坐标的应用,求函数图象上的点的坐标的问题一般要转化为求线段的长的问题.21、,见解析【分析】利用树状图法找出所有的可能情况,再找三位同学恰好在同一个公园游玩的情况个数,即可求出所求的概率.【详解】解:树状图如下:由上图可知一共有种等可能性,即、、、、、、、,它们出现的可能性选择,其中三位同学恰好在同一个公园游玩的有种等可能性,∴.【点睛】此题考查了列表法与树状图法,以及概率公式,用到的知识点为:概率=所求情况数与总情况数之比.22、见解析【分析】根据已知条件先证明四边形OBEC是平行四边形,再证明∠BOC=90°,OC=OB即可判定四边形OBEC是正方形.【详解】∵,,∴四边形是平行四边形,∵四边形是正方形,∴,,∴,∴四边形是矩形,∵,∴四边形是正方形.【点睛】本题考查正方形的性质和判定,解题的关键是熟练掌握正方形的性质和判定.23、(1)见解析;(2)【分析】(1)连接,根据三角形的内角和得到,根据等腰三角形的性质得到,得到,于是得到结论;(2)根据已知条件得到,根据勾股定理即可得到结论.【详解】(1)证明:连接,∵,∴,∴,∵,∴,∵,∴,∴,∴,∴∵点在上,∴是的切线(2)解:∵,∴,∴,【点睛】本题主要考查切线的判定以及圆和勾股定理,根据题意准确作出辅助线是求解本题的关键.24、(1)1:1;(2)①如图2所示,点P即为所要找的点;见解析;②如图1所示,作点A的对称点A′,见解析;【分析】(1)根据两条直线平行、对应线段成比例即可解答;(2)①先用勾股定理求得AB的长,再根据相似三角形的判定方法即可找到点P;②先作点A关于BD的对称点A',连接A'C与BD的交点即为要找的点P.【详解】解:(1)图1中,∵AB∥CD,∴,故答案为1:1.(2)①如图2所示,点P即为所要找的点;②如图1所示,作点A的对称点A′,连接A′C,交BD于点P,点P即为所要找的点,∵AB∥CD,∴△APB∽△CPD.【点睛】本题考查了相似三角形的做法,掌握相似三角形的判定方法是解答本题的关键
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025民间的借款合同范本2
- 2025搬家货运合同模板
- 2025年度年度水利工程设施维修管理协议3篇
- 二零二五年度2025年农业合作社合伙人合同协议3篇
- 2025年度农村房屋买卖合同(含房屋附属设施及土地开发)
- 二零二五年度农村住房建设智能化系统安装合同
- 2025年度大学毕业生就业意向与培养协议3篇
- 2025年度出差环境保护与可持续发展协议3篇
- 二零二五年度新型农村机井承包管理协议
- 2025年度体育用品商铺租赁合同范本(含赛事赞助合作)3篇
- 专项债券培训课件
- 中央企业人工智能应用场景案例白皮书(2024年版)-中央企业人工智能协同创新平台
- 江苏省苏州市2024-2025学年第一学期八年级历史期末模拟卷(二)(含答案)
- 杜瓦瓶充装操作规程(3篇)
- 安全管理体系与措施
- 校园重点防火部位消防安全管理规定(3篇)
- 中小学期末家长会24
- 2024年学校意识形态工作总结样本(5篇)
- 甘肃兰州生物制品研究所笔试题库
- 医院改扩建工程可行性研究报告(论证后)
- 双方共同招工协议书(2篇)
评论
0/150
提交评论