2023年江苏省句容市后白中学九年级数学第一学期期末统考试题含解析_第1页
2023年江苏省句容市后白中学九年级数学第一学期期末统考试题含解析_第2页
2023年江苏省句容市后白中学九年级数学第一学期期末统考试题含解析_第3页
2023年江苏省句容市后白中学九年级数学第一学期期末统考试题含解析_第4页
2023年江苏省句容市后白中学九年级数学第一学期期末统考试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年江苏省句容市后白中学九年级数学第一学期期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.关于x的方程有实数根,则k的取值范围是()A. B.且 C. D.且2.如图,的直径,是上一点,点平分劣弧,交于点,,则图中阴影部分的面积等于()A. B. C. D.3.如图,在△ABC中,中线BE、CF相交于点G,连接EF,下列结论:①=;②=;③=;④=.其中正确的个数有()A.1个 B. C.3个 D.4个4.如图,边长为1的正方形ABCD中,点E在CB的延长线上,连接ED交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y与x之间函数关系的是()A. B.C. D.5.一元钱硬币的直径约为24mm,则用它能完全覆盖住的正六边形的边长最大不能超过()A.12mm B.12mmC.6mm D.6mm6.下列事件是必然事件的是()A.明天太阳从西方升起B.打开电视机,正在播放广告C.掷一枚硬币,正面朝上D.任意一个三角形,它的内角和等于180°7.如图,把绕点逆时针旋转,得到,点恰好落在边上的点处,连接,则的度数为()A. B. C. D.8.顺次连结菱形各边中点所得到四边形一定是(​)A.平行四边形 B.正方形​ C.矩形​ D.菱形9.函数的顶点坐标是()A. B. C. D.10.如图,在菱形ABCD中,AC与BD相交于点O,AC=8,BD=6,则菱形的周长等于()A.40 B. C.24 D.2011.抛物线y=ax2+bx+c图像如图所示,则一次函数y=-bx-4ac+b2与反比例函数在同一坐标系内的图像大致为()A. B. C. D.12.如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,⊙O是△ABC的外接圆,D是AC的中点,连结AD,BD,其中BD与AC交于点E.写出图中所有与△ADE相似的三角形:___________.14.如图,四边形ABCD是⊙O的外切四边形,且AB=10,CD=15,则四边形ABCD的周长为_____.15.如图,菱形AD的边长为2,对角线AC、BD相交于点O,BD=2,分别以AB、BC为直径作半圆,则图中阴影部分的面积为__________.16.一个圆锥的母线长为10,高为6,则这个圆锥的侧面积是_______.17.函数的自变量的取值范围是.18.如图,AB是圆O的弦,AB=20,点C是圆O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN的最大值是_____.三、解答题(共78分)19.(8分)(问题呈现)阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,点M是的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=DB+BA.下面是运用“截长法”证明CD=DB+BA的部分证明过程.证明:如图2,在CD上截取CG=AB,连接MA、MB、MC和MG.∵M是的中点,∴MA=MC①又∵∠A=∠C②∴△MAB≌△MCG③∴MB=MG又∵MD⊥BC∴BD=DG∴AB+BD=CG+DG即CD=DB+BA根据证明过程,分别写出下列步骤的理由:①,②,③;(理解运用)如图1,AB、BC是⊙O的两条弦,AB=4,BC=6,点M是的中点,MD⊥BC于点D,则BD=;(变式探究)如图3,若点M是的中点,(问题呈现)中的其他条件不变,判断CD、DB、BA之间存在怎样的数量关系?并加以证明.(实践应用)根据你对阿基米德折弦定理的理解完成下列问题:如图4,BC是⊙O的直径,点A圆上一定点,点D圆上一动点,且满足∠DAC=45°,若AB=6,⊙O的半径为5,求AD长.20.(8分)已知二次函数的图像与轴交于点,与轴的一个交点坐标是.(1)求二次函数的解析式;(2)当为何值时,.21.(8分)如图,等边三角形ABC放置在平面直角坐标系中,已知A(0,0),B(4,0),反比例函数的图象经过点C.求点C的坐标及反比例函数的解析式.22.(10分)定义:有且仅有一组对角相等的凸四边形叫做“准平行四边形”.例如:凸四边形中,若,则称四边形为准平行四边形.(1)如图①,是上的四个点,,延长到,使.求证:四边形是准平行四边形;(2)如图②,准平行四边形内接于,,若的半径为,求的长;(3)如图③,在中,,若四边形是准平行四边形,且,请直接写出长的最大值.23.(10分)已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线解析式;(2)当点P运动到什么位置时,△PAB的面积最大?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.24.(10分)解答下列各题:(1)计算:2cos31°﹣tan45°﹣;(2)解方程:x2﹣11x+9=1.25.(12分)某型号飞机的机翼形状如图所示,已知所在直线互相平行且都与所在直线垂直,.,,,.求的长度(参考数,,,,,)26.如图,将矩形沿折叠,使顶点恰好落在边的处,点落在点处,交线段于点.(1)求证:;(2)若是的中点,,,求的长.

参考答案一、选择题(每题4分,共48分)1、C【分析】关于x的方程可以是一元一次方程,也可以是一元二次方程;当方程为一元一次方程时,k=1;是一元二次方程时,必须满足下列条件:(1)二次项系数不为零;(2)在有实数根下必须满足△=b2-4ac≥1.【详解】当k=1时,方程为3x-1=1,有实数根,当k≠1时,△=b2-4ac=32-4×k×(-1)=9+4k≥1,解得k≥-.综上可知,当k≥-时,方程有实数根;故选C.【点睛】本题考查了方程有实数根的含义,一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.注意到分两种情况讨论是解题的关键.2、A【分析】根据垂径定理的推论和勾股定理即可求出BC和AC,然后根据S阴影=S半圆O-S△ABC计算面积即可.【详解】解:∵直径∴OB=OD=,∠ACB=90°∵点平分劣弧,∴BC=2BE,OE⊥BC,OE=OD-DE=4在Rt△OBE中,BE=∴BC=2BE=6根据勾股定理:AC=∴S阴影=S半圆O-S△ABC==故选A.【点睛】此题考查的是求不规则图形的面积,掌握垂径定理与勾股定理的结合和半圆的面积公式、三角形的面积公式是解决此题的关键.3、C【解析】根据三角形的中位线定理推出FE∥BC,利用平行线分线段成比例定理、相似三角形的判定与性质和等底同高的三角形面积相等一一判断即可.【详解】∵AF=FB,AE=EC,∴FE∥BC,FE:BC=1:2,∴,故①③正确.∵FE∥BC,FE:BC=1:2,∴FG:GC=1:2,△FEG∽△CBG.设S△FGE=S,则S△EGC=2S,S△BGC=4s,∴,故②错误.∵S△FGE=S,S△EGC=2S,∴S△EFC=3S.∵AE=EC,∴S△AEF=3S,∴=,故④正确.故选C.【点睛】本题考查了相似三角形的判定与性质、三角形中位线定理、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4、C【分析】通过相似三角形△EFB∽△EDC的对应边成比例列出比例式,从而得到y与x之间函数关系式,从而推知该函数图象.【详解】根据题意知,BF=1﹣x,BE=y﹣1,∵AD//BC,∴△EFB∽△EDC,∴,即,∴y=(0.2≤x≤0.8),该函数图象是位于第一象限的双曲线的一部分.A、D的图象都是直线的一部分,B的图象是抛物线的一部分,C的图象是双曲线的一部分.故选C.5、A【解析】试题解析:已知圆内接半径r为12mm,则OB=12,∴BD=OB•sin30°=12×=6,则BC=2×6=12,可知边长为12mm,就是完全覆盖住的正六边形的边长最大.故选A.6、D【分析】必然事件就是一定会发生的事件,依次判断即可.【详解】A、明天太阳从西方升起,是不可能事件,故不符合题意;B、打开电视机,正在播放广告是随机事件,故不符合题意;C、掷一枚硬币,正面朝上是随机事件,故不符合题意;D、任意一个三角形,它的内角和等于180°是必然事件,故符合题意;故选:D.【点睛】本题是对必然事件的考查,熟练掌握必然事件知识是解决本题的关键.7、D【分析】由旋转的性质可得AB'=AB,∠BAB'=50°,由等腰三角形的性质可得∠AB'B=∠ABB'=65°.【详解】解:∵Rt△ABC绕点A逆时针旋转50°得到Rt△AB′C′,

∴AB'=AB,∠BAB'=50°,∴,故选:D.【点睛】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是本题的关键.8、C【分析】根据三角形的中位线定理首先可以证明:顺次连接四边形各边中点所得四边形是平行四边形.再根据对角线互相垂直,即可证明平行四边形的一个角是直角,则有一个角是直角的平行四边形是矩形.【详解】如图,四边形ABCD是菱形,且E.

F.

G、H分别是AB、BC、CD、AD的中点,

则EH∥FG∥BD,EF=FG=BD;EF∥HG∥AC,EF=HG=AC,AC⊥BD.

故四边形EFGH是平行四边形,

又∵AC⊥BD,

∴EH⊥EF,∠HEF=90°,

∴边形EFGH是矩形.

故选:C.【点睛】本题考查平行四边形的判定和三角形中位线定理,解题的关键是掌握平行四边形的判定和三角形中位线定理.9、B【分析】根据题目中的函数解析式,可以直接写出该函数的顶点坐标,本题得以解决.【详解】解:∵函数,∴该函数的顶点坐标是,故选:B.【点睛】本题主要考查二次函数的图像,关键是根据二次函数的顶点式直接得到顶点坐标即可.10、D【分析】根据菱形的性质可求得BO、AO的长,AC⊥BD,根据勾股定理可求出AB,进而可得答案.【详解】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,,,AC⊥BD,则在Rt△ABO中,根据勾股定理得:,∴菱形ABCD的周长=4×5=1.故选:D.【点睛】本题考查了菱形的性质和勾股定理,属于基础题目,熟练掌握菱形的性质是解题的关键.11、D【详解】解:由二次函数y=ax2+bx+c的图象开口向上可知,a>0,因为图象与y轴的交点在y轴的负半轴,所以c<0,根据函数图象的对称轴x=﹣>0,可知b<0根据函数图象的顶点在x轴下方,可知∴4ac-b2<0有图象可知f(1)<0∴a+b+c<0∵a>0,b<0,c<0,ac<0,4ac-b2<0,a+b+c<0∴一次函数y=-bx-4ac+b2的图象过一、二、三象限,故可排除B、C;∴反比例函数的图象在二、四象限,可排除A选项.故选D考点:函数图像性质12、B【分析】先求出连接两点所得的所有线段总数,再用列举法求出取到长度为的线段条数,由此能求出在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率.【详解】根据题意可得所有的线段有15条,长度为的线段有AE、AC、FD、FB、EC、BD共6条,则P(长度为的线段)=.故选:B【点睛】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.二、填空题(每题4分,共24分)13、,【分析】根据两角对应相等的两个三角形相似即可判断.【详解】解:∵,∴∠ABD=∠DBC,∵∠DAE=∠DBC,∴∠DAE=∠ABD,∵∠ADE=∠ADB,∴△ADE∽△BDA,∵∠DAE=∠EBC,∠AED=∠BEC,∴△AED∽△BEC,故答案为△CBE,△BDA.【点睛】本题考查相似三角形的判定,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14、1【分析】根据切线长定理得到AE=AH,BE=BF,CF=CG,DH=DG,得到AD+BC=AB+CD=25,根据四边形的周长公式计算,得到答案.【详解】∵四边形ABCD是⊙O的外切四边形,∴AE=AH,BE=BF,CF=CG,DH=DG,∴AD+BC=AB+CD=25,∴四边形ABCD的周长=AD+BC+AB+CD=25+25=1,故答案为:1.【点睛】本题考查的是切线长定理,掌握从圆外一点引圆的两条切线,它们的切线长相等是解题的关键.15、-【分析】设BC的中点为M,CD交半圆M于点N,连接OM,MN.易证∆BCD是等边三角形,进而得∠OMN=60°,即可求出;再证四边形OMND是菱形,连接ON,MD,求出,利用,即可求解.【详解】设BC的中点为M,CD交半圆M于点N,连接OM,MN.∵四边形ABCD是菱形,∴BD⊥AC,∴两个半圆都经过点O,∵BD=BC=CD=2,∴∆BCD是等边三角形,∴∠BCD=60°,∴∠OCD=30°,∴∠OMN=60°,∴,∵OD=OM=MN=CN=DN=1,∴四边形OMND是菱形,连接ON,MD,则MD⊥BC,∆OMN是等边三角形,∴MD=CM=,ON=1,∴MD×ON=,∴.故答是:-【点睛】本题主要考查菱形的性质和扇形的面积公式,添加辅助线,构造等边三角形和扇形,利用割补法求面积,是解题的关键.16、80π【分析】首先根据勾股定理求得圆锥的底面半径,从而得到底面周长,然后利用扇形的面积公式即可求解.【详解】解:圆锥的底面半径是:=8,圆锥的底面周长是:2×8π=16π,

则×16π×10=80π.故答案为:80π.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.17、x>1【详解】解:依题意可得,解得,所以函数的自变量的取值范围是18、1【解析】连接OA、OB,如图,根据圆周角定理得到∠AOB=2∠ACB=90°,则OA=AB=1,再根据三角形中位线性质得到MN=AC,然后利用AC为直径时,AC的值最大可确定MN的最大值.【详解】解:连接OA、OB,如图,∴∠AOB=2∠ACB=2×45°=90°,∴△OAB为等腰直角三角形,∴OA=AB=×1=1,∵点M、N分别是AB、BC的中点,∴MN=AC,当AC为直径时,AC的值最大,∴MN的最大值为1,故答案为1.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了三角形中位线性质.三、解答题(共78分)19、(问题呈现)相等的弧所对的弦相等;同弧所对的圆周角相等;有两组边及其夹角分别对应相等的两个三角形全等;(理解运用)1;(变式探究)DB=CD+BA;证明见解析;(实践应用)1或.【分析】(问题呈现)根据圆的性质即可求解;(理解运用)CD=DB+BA,即CD=6﹣CD+AB,即CD=6﹣CD+4,解得:CD=5,即可求解;(变式探究)证明△MAB≌△MGB(SAS),则MA=MG,MC=MG,又DM⊥BC,则DC=DG,即可求解;(实践应用)已知∠D1AC=45°,过点D1作D1G1⊥AC于点G1,则CG1′+AB=AG1,所以AG1=(6+2)=1.如图∠D2AC=45°,同理易得AD2=.【详解】(问题呈现)①相等的弧所对的弦相等②同弧所对的圆周角相等③有两组边及其夹角分别对应相等的两个三角形全等故答案为:相等的弧所对的弦相等;同弧所定义的圆周角相等;有两组边及其夹角分别对应相等的两个三角形全等;(理解运用)CD=DB+BA,即CD=6﹣CD+AB,即CD=6﹣CD+4,解得:CD=5,BD=BC﹣CD=6﹣5=1,故答案为:1;(变式探究)DB=CD+BA.证明:在DB上截去BG=BA,连接MA、MB、MC、MG,∵M是弧AC的中点,∴AM=MC,∠MBA=∠MBG.又MB=MB∴△MAB≌△MGB(SAS)∴MA=MG∴MC=MG,又DM⊥BC,∴DC=DG,AB+DC=BG+DG,即DB=CD+BA;(实践应用)如图,BC是圆的直径,所以∠BAC=90°.因为AB=6,圆的半径为5,所以AC=2.已知∠D1AC=45°,过点D1作D1G1⊥AC于点G1,则CG1′+AB=AG1,所以AG1=(6+2)=1.所以AD1=1.如图∠D2AC=45°,同理易得AD2=.所以AD的长为1或.【点睛】本题考查全等三角形的判定(SAS)与性质、等腰三角形的性质和圆心角、弦、弧,解题的关键是掌握全等三角形的判定(SAS)与性质、等腰三角形的性质和圆心角、弦、弧.20、(1)y=(x-1)2-9;(2)-2<x<4【分析】(1)将点A和点C的坐标代入抛物线的解析式可求得a,k的值,从而得到抛物线的解析式;

(2)根据对称性求出抛物线与x轴的另一个交点B的坐标,最后依据y<1可求得x的取值范围.【详解】解:(1)∵y=a(x-1)2+k的图像与y轴交于点C(1,﹣8),与x轴的一个交点坐标是A(﹣2,1).∴,解得,,∴该函数的解析式为y=(x-1)2-9;(2)令y=1,则(x-1)2-9=1,解得:,∴点B的坐标为(4,1).∴当-2<x<4时,y<1.【点睛】本题主要考查的是抛物线与x轴的交点、待定系数法求二次函数的解析式,掌握相关知识是解题的关键.21、点C坐标为(2,2),y=【分析】过C点作CD⊥x轴,垂足为D,设反比例函数的解析式为y=,根据等边三角形的知识求出AC和CD的长度,即可求出C点的坐标,把C点坐标代入反比例函数解析式求出k的值.【详解】解:过C点作CD⊥x轴,垂足为D,设反比例函数的解析式为y=,∵△ABC是等边三角形,∴AC=AB=4,∠CAB=60°,∴AD=3,CD=sin60°×4=×4=2,∴点C坐标为(2,2),∵反比例函数的图象经过点C,∴k=4,∴反比例函数的解析式:y=;【点睛】考查了待定系数法确定反比例函数的解析式的知识,解题的关键是根据题意求得点C的坐标,难度不大.22、(1)见解析;(2);(3)【分析】(1)先根据同弧所对的圆周角相等证明三角形ABC为等边三角形,得到∠ACB=60°,再求出∠APB=60°,根据AQ=AP判定△APQ为等边三角形,∠AQP=∠QAP=60°,故∠ACB=∠AQP,可判断∠QAC>120°,∠QBC<120°,故∠QAC≠∠QBC,可证四边形是准平行四边形;(2)根据已知条件可判断∠ABC≠∠ADC,则可得∠BAD=∠BCD=90°,连接BD,则BD为直径为10,根据BC=CD得△BCD为等腰直角三角形,则∠BAC=∠BDC=45°,在直角三角形BCD中利用勾股定理或三角函数求出BC的长,过B点作BE⊥AC,分别在直角三角形ABE和△BEC中,利用三角函数和勾股定理求出AE、CE的长,即可求出AC的长.(3)根据已知条件可得:∠ADC=∠ABC=60°,延长BC到E点,使BE=BA,可得三角形ABE为等边三角形,∠E=60°,过A、E、C三点作圆o,则AE为直径,点D在点C另一侧的弧AE上(点A、点E除外),连接BO交弧AE于D点,则此时BD的长度最大,根据已知条件求出BO、OD的长度,即可求解.【详解】(1)∵∴∠ABC=∠BAC=60°∴△ABC为等边三角形,∠ACB=60°∵∠APQ=180°-∠APC-∠CPB=60°又AP=AQ∴△APQ为等边三角形∴∠AQP=∠QAP=60°∴∠ACB=∠AQP∵∠QAC=∠QAP+∠PAB+∠BAC=120°+∠PAB>120°故∠QBC=360°-∠AQP-∠ACB-∠QAC<120°∴∠QAC≠∠QBC∴四边形是准平行四边形(2)连接BD,过B点作BE⊥AC于E点∵准平行四边形内接于,∴∠ABC≠∠ADC,∠BAD=∠BCD∵∠BAD+∠BCD=180°∴∠BAD=∠BCD=90°∴BD为的直径∵的半径为5∴BD=10∵BC=CD,∠BCD=90°∴∠CBD=∠BDC=45°∴BC=BDsin∠BDC=10,∠BAC=∠BDC=45°∵BE⊥AC∴∠BEA=∠BEC=90°∴AE=ABsin∠BAC=6∵∠ABE=∠BAE=45°∴BE=AE=在直角三角形BEC中,EC=∴AC=AE+EC=(3)在中,∴∠ABC=60°∵四边形是准平行四边形,且∴∠ADC=∠ABC=60°延长BC到E点,使BE=BA,可得三角形ABE为等边三角形,∠E=60°,过A、E、C三点作圆o,因为∠ACE=90°,则AE为直径,点D在点C另一侧的弧AE上(点A、点E除外),此时,∠ADC=∠AEC=60°,连接BO交弧AE于D点,则此时BD的长度最大.在等边三角形ABE中,∠ACB=90°,BC=2∴AE=BE=2BC=4∴OE=OA=OD=2∴BO⊥AE∴BO=BEsin∠E=4∴BD=BO+0D=2+即BD长的最大值为2+【点睛】本题考查的是新概念及圆的相关知识,理解新概念的含义、掌握圆的性质是解答的关键,本题的难点在第(3)小问,考查的是与圆相关的最大值及最小值问题,把握其中的不变量作出圆是关键.23、(1)y=﹣x2﹣2x+3(2)(﹣,)(3)存在,P(﹣2,3)或P(,)【分析】(1)用待定系数法求解;(2)过点P作PH⊥x轴于点H,交AB于点F,直线AB解析式为y=x+3,设P(t,﹣t2﹣2t+3)(﹣3<t<0),则F(t,t+3),则PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t,根据S△PAB=S△PAF+S△PBF写出解析式,再求函数最大值;(3)设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3),PD=﹣t2﹣3t,由抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4,由对称轴为直线x=﹣1,PE∥x轴交抛物线于点E,得yE=yP,即点E、P关于对称轴对称,所以=﹣1,得xE=﹣2﹣xP=﹣2﹣t,故PE=|xE﹣xP|=|﹣2﹣2t|,由△PDE为等腰直角三角形,∠DPE=90°,得PD=PE,再分情况讨论:①当﹣3<t≤﹣1时,PE=﹣2﹣2t;②当﹣1<t<0时,PE=2+2t【详解】解:(1)∵抛物线y=ax2+bx+3过点B(﹣3,0),C(1,0)∴解得:∴抛物线解析式为y=﹣x2﹣2x+3(2)过点P作PH⊥x轴于点H,交AB于点F∵x=0时,y=﹣x2﹣2x+3=3∴A(0,3)∴直线AB解析式为y=x+3∵点P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论